
Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

9 Technological Outlook

9.1 Web Application on Bare Metal: WebAssembly
9.2 Container Orchestration and Cloud Native
9.3 Other Selected Trends: Go, HTTP/3
9.4 Conclusion

1

Literature:
https://webassembly.org

https://webassembly.org

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Example: Windows 2000 in a Browser

2

Windows 2000 runs in a browser, https://bellard.org/jslinux/

• Can you imaging how the OS is running in a browser?

https://caniuse.com/#search=wasm
https://bellard.org/jslinux/

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

WebAssembly (WASM)

3

https://www.w3.org/blog/news/archives/8123

https://www.w3.org/blog/news/archives/8123

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

 Evolution of Front-end Engineering

4

• ECMAScript evolves a lot
– The first formal draft submitted to ECMA (ECMAScript 1.1, 1997)
– “Strict mode” is introduced (ECMAScript 5, 2009)
– Massive changes to the language (ECMAScript 6, 2015)
– Latest version: ECMAScript 2019 (version 10)

• Business is becoming much more complex
– HTML/CSS/JS in the beginning
– jQuery addresses pain points better manipulating DOMs and AJAX
– Frameworks (Phase 1): Knockout / Backbone / AngularJS
– Tooling: NodeJS/NPM/Babel/Webpack …
– Frameworks (Phase 2): React/Angular/Vue

• JavaScript, as a dynamic typed language, is the only language for front-end
web development

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

JavaScript: The Good Parts

5

• TODO

https://www.reddit.com/r/ProgrammerHumor/comments/621qrt/javascript_the_good_parts/

https://www.reddit.com/r/ProgrammerHumor/comments/621qrt/javascript_the_good_parts/

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Early Attempts: ASM.js and NaCl

6

• JavaScript deduces types in runtime

• ASM.js by Mozilla
– A subset of JavaScript to avoid type inconsistency and garbage collection
– Proved that languages can be transpired to JavaScript and run in the

browser
function f(i) {

 i = i|0;

 return (i + 1)|0;

}

• NativeClient (NaCl) by Google
– but never implemented except Chrome
– Dropped in 2017

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

V8 Pipeline Design + WASM

7

wasm binary

Source: Compiling for the Web with WebAssembly (Google I/O '17)

https://www.youtube.com/watch?v=6v4E6oksar0

• Binary instruction format
– a low-level virtual machine standard for web application
– Memory safe execution environment sandbox

• W3C WebAssembly Working Group, Community Group
• The “fourth” language for web development
• Benefits

– Speed: (Near) native
– Portability: Extreme Low-level
– Flexibility: Get rid of JavaScript only

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

WebAssembly (WASM)

8

https://caniuse.com/#search=wasm

https://caniuse.com/#search=wasm

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Discussion
• What makes asm.js and NaCl failed?
• Do you think JavaScript will die in the near future?

9

https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

9 Technological Outlook

9.1 Web Application on Bare Metal: WebAssembly
9.2 Container Orchestration and Cloud Native
9.3 Other Selected Trends: Go, HTTP/3
9.4 Conclusion

10

Literature:
Newman S. Building microservices: designing fine-grained systems. O'Reilly

Media, Inc. 2015 Feb 2.
https://kubernetes.io
https://cncf.io

https://kubernetes.io
https://cncf.io

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Example: Occamy Remote Desktop Streaming

11

 https://github.com/changkun/occamy

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Virtualization (2000-2010)

12

• Windows 2000 (NT) Server introduce “Active Directory”
– All servers centralized in a single domain

• Virtualization & OS-level resources isolation
– Virtual machines (VMs) over the operating system
– Debugging different platforms
– Enables programmable hardware resource management automation

• Related tech.: VMware Workstation, vSphere, Hyper-V, QEMU, Xen, KVM…
• Products offer the ability of virtualization requires better managements

– Infrastructure-as-a-Service (IaaS)
– AWS by Amazon (2006)
– Azure by Microsoft (2008)
– OpenStack (2010)

• But VMs are expensive for lightweight applications

Hardwares

OS

Hypervisor

VM #1

MS

VM #2

Linux

VM #3

macOS

App
#1

App
#2

App
#3

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Containerization (2010-2015)

13

• Platform-as-a-Service (PaaS)
– Cloud Foundry (2010) Foundation (2014)
– OpenShift (2011)

• Docker (2013):
– Encapsulate simple, friendly, and easy to use
– Resolve issues of packaging and delivery
– Based on LXC, Cgroups, and Namespace
– Process-level hardware resources isolation

• Operations eventually require platform-level orchestration utilities
– Apache Mesos: Marathon (2013) offers large-scale cluster management
– Docker Swarm (2014) uses Docker APIs for container orchestration
– Kubernetes initiated by Google in 2014 and releases in 2015 rescues

CoreOS (a major competitor of Docker) and RedHat (early contributor of
Docker) in the container market

Hardwares

OS

App
#1

App
#2

App
#3

Library Frameworks

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Serverless (2015-today)

14

Source: Wikipedia

• Open Container Initiative (OCI)
– Container image spec and runtime spec

• Cloud Native Computing Foundation (CNCF)
– Cloud native standardizing incubating applications and best practices of

creating cloud native applications

• Serverless != No server
– is an ideology for eliminating hardware and operation details
– Cloud Native is a set of standards and infrastructures to achieve serverless
– Today: Serverless ≈ Container Runtime (e.g., Docker) + Kubernetes

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Cloud Computing Terminologies

15

Network/Power

Hardware/
Machine

Operating
System

Runtime

Software

Business Logic

Foreign Service

Self-established
Data Center

Network/Power

Hardware/
Machine

Operating
System

Runtime

Software

Business Logic

Foreign Service

Purchasing
Machines

Network/Power

Hardware/
Machine

Operating
System

Runtime

Software

Business Logic

Foreign Service

IaaS

Network/Power

Hardware/
Machine

Operating
System

Runtime

Software

Business Logic

Foreign Service

PaaS

Network/Power

Hardware/
Machine

Operating
System

Runtime

Software

Business Logic

Foreign Service

FaaS

Network/Power

Hardware/
Machine

Operating
System

Runtime

Software

Business Logic

Foreign Service

SaaS

Self-Managed

Provider-supplied

• Building a data center is prohibitively expensive
• Computing resource business is feasible

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Docker (now Moby) Core Concept and Architecture

16

Source: https://docs.docker.com/engine/docker-overview/

https://docs.docker.com/engine/docker-overview/

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

The Rise and Fall of Docker, Inc. (former dotCloud)

• 2013 - A PaaS startup dotCloud open sourced their product Docker
– Gathering developers and building community shapes its early success
– Changed the company to Docker and branded the name of Docker

• 06/2014 - Google announced the Kubernetes project
• 12/2014 - Docker announced Docker Swarm project

– 250 Million investments from Goldman Sachs, Greylock Partners, Sequoia
Capital, etc.

• 06/2015 - Docker, CoreOS, Google, and RedHat initiated OCI
– Docker donated libcontainer as RunC for container standardization

• 07/2015 - Kubernetes 1.0 release, Google & Linux Foundation launched CNCF
• 2016 - Docker, Inc. accounted for the abandonment of Docker Swarm
• 2017 - Rename Docker project to Moby at Dockercon17

– Docker announce Kubernetes support
• 2018 - Solomon Hykes (the CTO of Docker) announces his resignation

17

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Discussion
• What did you learn from the rise and fall of Docker Inc.?

– Think about the balance of building a successful product and make profits
– Think about the developer community

• Where should Container-as-a-Service (CaaS) be placed in:
– IaaS > PaaS > FaaS > SaaS

18

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Kubernetes
• Kubernetes (greek for governor, helmsman, captain)

– Open-source container orchestration system
– Originally designed by Google, maintained by CNCF since 1.0 release
– Aim to provide “platform for automating deployment, scaling and operations

of application containers across clusters of hosts
• Declarative YAML-based configuration

– kubectl apply -f deployment.yaml

19

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Kubernetes Core Concepts

20

• Pod
– The smallest deployable object in

Kubernetes
– Encapsulates multiple application’s

containers, storage resources, a unique
network IP, and options that govern how
the containers should run

• Controllers
– Control loop

» for { if actual state !=
desired state then do
orchestrate }

» The desired state is defined in a YAML
configuration file

– Kind: Deployments
» horizontal scaling (e.g., rolling update)

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp-deployment
spec:
 selector:
 matchLabels:
 app: myapp
 replicas: 2
 template:
 metadata:
 labels:
 app: myapp
 spec:
 containers:
 - name: myapp
 image: myapp:latest
 ports:
 - containerPort: 80

deployment.yaml

Worker nodeWorker nodeWorker node

Container Runtime

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Kubernetes Architecture

21

Master node

kubectl (developer)

API Server

Controller-
manager

(replication,
namespace,

…)

Scheduler

etcd

kubelet Kube-proxy

Pod

Internet
Users

container

container

Pod

container

container

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/architecture.md

Cloud
Provider

cloud-
controller-
manager

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/architecture.md

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Cloud Native Computing Foundation (CNCF)

• Is a Linux Foundation project
– Linux Foundation was founded by non-profit Open Source Development

Labs (OSDL) and Free Standards Group (FSG)
• Announced with Kubernetes 1.0 in 2015

– Operational control handed over to the community in 2018

• Hosts critical components of the global technology infrastructure
– Microservices architecture!

22

Cloud native technologies empower organizations to build and run scalable
applications in modern, dynamic environments such as public, private, and
hybrid clouds. Containers, service meshes, microservices, immutable
infrastructure, and declarative APIs exemplify this approach.

CNCF Cloud Native Definition v1.0 https://github.com/cncf/toc/blob/master/DEFINITION.md

https://github.com/cncf/toc/blob/master/DEFINITION.md

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Monolith Architecture

• Monolithic code base: contributes to a single big codebase
• Monolithic database and everything tightly coupled architecture

– Massive conflicts
– Crash at once
– Sticky connections

23

Linux Host
Linux Host

Load Balancer

Linux Host

Proxy AppHTTP/S DatabaseApp

Load Balancer

Linux Host

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Microservice Architecture
• “…the microservice architectural style is an approach to developing a single

application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API.” —
Martin Fowler

• Separation of concerns: Modularity, encapsulation
• Scalability: Horizontally scaling, workload partitioning
• Virtualization & elasticity: Automated operations, on demand provisioning

24

API G
atew

ay

App1HTTP/S
Database

App2

App3 App4

App2App2
App1App1

App4App4
App3

Database

DatabaseDatabase

Load Balancer

API G
atew

ay

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Microservice Metaphors

25

API Gateway

Image taken from https://www.musikwissenschaft.uni-muenchen.de/musikpraxis/collegium/eindruecke/index.html

Microservices

Load balanced
Clients

Load balanced
Clients

https://www.musikwissenschaft.uni-muenchen.de/musikpraxis/collegium/eindruecke/index.html

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Technologies in Microservices

26

Access

Gateway

Business
Service

Supporting
Service

PaaS

IaaS

Load Balancer

Internal GW / Third-party GW

Service
Discovery

Configuration
Center

Fault Tolerance
Rate Limit

Authentication Log
Tracing

Monitoring

Delivery
System

Integration

Foundation

Cluster
Scheduling

Image
Orchestration

Resource
Orchestration IAM

Computation Network Storage Security

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Microservices Governance and Technologies

27

• Providers
• Provisioning

– Automation & Configuration
– Container Registry
– Security & Compliance
– Key Management

• Runtime
– Storage
– Container runtime
– Network

• Observability and Analysis
– Monitoring
– Logging
– Tracing

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Microservices Governance and Technologies

28

• Orchestration
– Scheduling
– Coordination & service discovery
– PRC
– Service proxy
– API gateway
– Service mesh

• Developments
– Database
– Streaming
– Image build
– continues integration & delivery

• Front-end

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

CNCF Cloud Native Landscape

29

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Discussion
• Does microservice always better than monolithic?

– Think about building your personal website with microservice architecture

• When do you want to choose microservices architecture?

30

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

9 Technological Outlook

9.1 Web Application on Bare Metal: WebAssembly
9.2 Container Orchestration and Cloud Native
9.3 Other Selected Trends: Go, HTTP/3
9.4 Conclusion

31

Literature:
https://golang.org
https://quicwg.org/base-drafts/draft-ietf-quic-http.html

https://golang.org
https://quicwg.org/base-drafts/draft-ietf-quic-http.html

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

 Go
• Open source programming language

– Creators: Rob Pike, Ken Thompson, Robert Griesemer
– Started almost simultaneously with V8
– Start from C, inspired by Pascal family and Tony Hoare’s CSP

• Key features: Simple, stable, fast compilation, built-in concurrency
– 25 keywords, stable for 10 years since Go 1 releases
– No cycle import, no function override
– Goroutines as lightweight threads
– Channel philosophy “Do not communicate by sharing memory, share

memory by communicating”
• Support cross compilation and package modularization
• Must be formatted to pass compilation, only one style of coding
• Is de facto the language of cloud computing at present:

– Kubernetes, etcd, Prometheus, Docker… are implemented by Go

32

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Why Go? An Oversimplified Version
• Before Go

– C and Unix became dominant in research
– The desire for a higher-level language led to C++, e.g.
for(map<string, pair<string,string> >::const_iterator
iter = p.begin(); iter != p.end(); ++p)

– C++ became the language of choice in parts of industry and in many
research universities.

– Java arose as a clearer stripped-down C++
– By the late 1990s, a teaching language was needed that seemed

relevant, and Java was chosen.
– C++03 brings more complex features, e.g.
for(const auto&& val: p)

33

https://spf13.com/presentation/the-legacy-of-go/

https://spf13.com/presentation/the-legacy-of-go/

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Why Go? Sophistication or Level of Abstraction

34

• “The reason I was enthusiastic about Go is because, at the same time we were
starting on Go, I tried to read the C++ 0x proposed standard, that was the
convincer for me.” — Ken Thompson

• “The code is harder to understand simply because it is using a more complex
language” — Rob Pike

• “In Go (compare to C++), we’re trying to do a completely different approach, to
take things out as much as we can, to reduce them to the bare bones, the
absolute minimum that you need to build everything up.” — Robert Griesemer

“Any given function template specialization F1 is eliminated if the set contains a
second function template specialization whose function template is more
specialized than the function template of F1 according to the partial ordering
rules of 17.6.6.2. After such eliminations, if any, there shall remain exactly one
selected function.” — Working Draft, Standard for Programming Language C++
16.4 Address of overloaded function

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Go Design: Concurrency

35

• Concurrency is the ability to write your program as independently
executing pieces. In Go, concurrency has three elements:
– Grouting (execution): light-weight threads

» go function(args)

– Channels (communication): Message passing and synchronization
» Send message: ch <- value
» Receive message: dst := <- ch

– Select (coordination): managing channels concurrently
» select {

case value := <- ch1: …

case ch2 <- value: …

}

package main

import (
 "fmt"
 "log"
 "net/http"
)

func こんにちは_Gophers(w http.ResponseWriter, req *http.Request) {
 fmt.Fprintf(w, "こんにちは Gophers!\n")
}

func main() {

 http.HandleFunc("/", こんにちは_Gophers)
 err := http.ListenAndServe("localhost:12345", nil)
 if err != nil {
 log.Fatal("ListenAndServe: ", err)
 }
}

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Example: A High Performance HTTP Server

36

Packages

UTF8 by default

Fprintf direct to network
connection

Truly concurrent and
production ready

main.go

Error handling

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

HTTP/3
• Is the upcoming third major version of Hypertext Transfer Protocol
• Draft based on Request on Comments (RFC) draft, named “HTTP over QUIC,

user space congestion control is used over UDP

37

IP

TCP
UDP

TLS
QUIC

Kernel Space
Kernel Space

User Space

https://caniuse.com/#feat=http3

• No public supports yet
– Available on Chrome and Firefox

latest beta

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Evolution of HTTP

38

Client Server
TCP SYNC

TCP SYNC + ACK

TCP ACK

• HTTP/0.9 (1991)
• HTTP/1.0 (1996)

– TCP connection is created for each
request/response exchange between
clients

– All requests incur a latency penalty
• HTTP/1.1 (1997)

– “keep-alive” connections that allow clients
to reuse TCP connections

• HTTP/2.0 (2015)
– Allow concurrently multiplex different

HTTP exchanges onto the same TCP
connection

• HTTP/3.0 (2018)

HTTP Request

HTTP Response

TLS ClientHello

TLS ServerHello

TLS Finished

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

HTTP/3.0

39

https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html

• How communication is processed between two persons?

https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

9 Technological Outlook

9.1 Web Application on Bare Metal: WebAssembly
9.2 Container Orchestration and Cloud Native
9.3 Other Selected Trends: Go, HTTP/3
9.4 Conclusion

40

Literature:
Conway ME. How Do Committees Invent? Datamation magazine. 14(4),

pp.28-31.
Brooks FP, No Silver Bullet. IEEE computer. 1987 Apr;20(4):10-9.
Brooks FP. The Mythical Man-Month, Anniversary ed. p. cm. 1995.
Micah Beck. 2019. On the hourglass model. Commun. ACM 62, 7 (June

2019), 48-57.

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Architecture and Organizations

41

• Maintainability, reliability, and security are the
most important (at scale)

• Monolith vs. Microservice
– Web applications support any style
– Stateless is the key to introduce

redundancy (reliability)
– Premature optimization is the root of all evil

• Conway’s Law and Hourglass Model
– The Conway’s Law: Organizations which

design systems … are constrained to
produce designs which are copies of the
communication structure of these
organizations

– The Hourglass Model: Logical weakness is
critical to the development scalability

Micah Beck. 2019. On the hourglass model. Commun.

ACM 62, 7 (June 2019), 48-57.

Conway ME. How do committees invent. Datamation. 1968 Apr;14(4):28-31.

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Take Away

42

• Open-source and developer community matters and are eating the world
• Future outlook:

– Is hard to say, popularity != future
» But many experiences and lessons can help us make the prediction

– Virtualization, containerization, and orchestration are hard
» See WebAssembly and CNCF landscape

– Simplicity is complicated, but the clarity is worth the fight
» Compare JavaScript, TypeScript, C++, Rust, and also Go

Ludwig-Maximilians-Universität München Changkun Ou, Prof. Hußmann Online Multimedia, WS 2019/20 – 9 –

Discussion (Time Permitting)
• When does a technical problem become an “organization” problem?

– What is the general process of resolving the issue?
– What is the root cause that technologies been revolutionized?

• How do you imaging WebAssembly changes the way of front-end
developments?
– Think about virtualization and containerization

• What could change if content distribution achieve (nearly) zero delay time?

43

