
Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Computer Graphics 1

Tutorial 6 Rasterization II

1

Summer Semester 2021

 Ludwig-Maximilians-Universität München

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Tutorial 6: Rasterization II

2

● Drawing Sampling

○ Issues with Bresenham algorithm

○ Point-in-triangle assertion

○ Anti-aliasing

● Modern Rasterization Rendering Pipeline

○ Shader language and shader programs

○ OpenGL Shading Language (GLSL)

○ Vertex Shader

○ Fragment Shader

○ Debugging Shaders

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

● Performance: Desire parallelized execution for all pixels but drawing a line from left to right is sequential

● Aliasing: scan converted objects exhibit discretization artifacts (staircase effect)

Issues with Bresenham and Scan Line Algorithms

3

jagged edge

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Point-in-Triangle Assertion
Basic idea: If P is always on the left of all edges

P is on the left side of AB:

P is on the left side of BC:

P is on the left side of CA:

⇒ P is inside triangle ABC

Alternative to scan line algorithm for triangle drawing:

For all pixels in the AABB of a given ABC, if a pixel is inside the triangle, then draw the pixel.

Point-in-triangle assertion is implemented on the GPU as fixed, specialized function. The GPU executes this test for

all pixels parallelly and efficiently. Testing point-in-triangle is the most practical and efficient approach to draw a triangle.

4

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Scan line vs. Point-in-Triangle Assertion based Drawing
● Scanline algorithm embeds numeric issue inside the

algorithm design: when should the coordinates of a

vertex position be numerically rounded (i.e. which pixel

to initiate the drawing)?

● Point-in-triangle assertion is a boolean assertion to

check if pixel center is inside the triangle, and can be

easily optimized and executed in parallel

*Corner case: if a pixel center is exactly at the edge of the triangle: decide yourself in the implementation

5

Scan Line
Drawing

Point-in-Triangle
Drawing

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Aliasing and Antialiasing
● Both scan line algorithm, and point-in-triangle assertion based drawing introduces line aliasing issue

● How to reduce aliasing issue?

○ Higher resolution display (therefore higher frame buffer) i.e. + €€€

■ Disadvantage: adds more computation cost to software, and needs high resolution on hardware

○ Antialiasing

6

Pre-Filter Sample

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Multi-Sample Anti-aliasing (MSAA)

7

Multi sample antialiasing (MSAA): Sampling high resolution samples then render in a lower resolution

MSAA computes the coverage of a triangle area on a pixel

75%
100%

100% 100% 100% 100%

100%

100%

100%

100%

50% 25%

50% 100%

100%

2x2 Super sampling Averaging down

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Antialiasing Today
The antialiasing methods that appear in many video games:

● Fast Approximate Antialiasing (FXAA, 2009)

● Temporal Antialiasing (TXAA, 2012)

● Deep Learning Super Sampling (DLSS 2.0, 2020)

8

http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://www.geforce.com/hardware/technology/txaa/technology
https://developer.nvidia.com/gtc/2020/slides/s22698-dlss-image-reconstruction-for-real-time-rendering-with-deep-learning.pdf

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1 9

Breakout: Implement Point-in-Triangle Assertion
Enter folder demos/06-raster2/1-draw (live demo)

Look for TODO comments in the main.ts

1. Implement the drawTriangle function for the point-in-triangle

assertion based drawing of a given triangle.

2. Modify vertex positions of the triangle, answer these questions:

How efficient is the point-in-triangle assertion?

Does the shape of the triangle impact the performance?

https://mimuc.github.io/cg1-ss21/06-raster2/1-draw/

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Tutorial 6: Rasterization II

10

● Drawing Sampling

○ Issues with Bresenham algorithm

○ Point-in-triangle Assertion

○ Anti-aliasing

● Modern Rasterization Rendering Pipeline

○ Shader language and shader programs

○ OpenGL Shading Language (GLSL)

○ Vertex Shader

○ Fragment Shader

○ Debugging Shaders

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Modern Rasterization Rendering Pipeline (on GPU)

11

Vertex Generation

Vertex Processing (via Vertex Shader)

Primitive Generation

Primitive Processing

Rasterization (Fragment Generation)

Fragment Processing (via Fragment Shader)

Frame Buffer Operations

GPU Memory

Vertex Buffer

Frame Buffer

Index Buffer

Depth Buffer

...

Vertices in 3D space as input

Vertices positioned
in screen space

fragments
(one per covered sample)

shaded fragments

Texture

The pipeline can be executed for multiple passes, and one rendering pass means: 1) create a frame buffer, 2) specify one

or more buffers as output, and 3) render content from an output buffer

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

OpenGL Deprecated!

12

OpenGL is a standardized set of APIs that describes the previous rasterization rendering pipeline on a GPU.

Advantage:

● Cross platform

Disadvantages:

● Compatibility: different versions have different set of APIs or different API behaviors

● State-machine programming model, C-style and not easy to use

● Debugging is (or was) non-trivial

Fore more, see http://docs.gl/. We will not discuss OpenGL in detail. Instead...

http://docs.gl/

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Shader Program and Shading Language
● Shader is a small program that runs on GPU instead of CPU

● Shader programs are written in language similar to C but with restrictions, called shading language

● To run a shader program (on GPU), similar to CPU programs, one must:

1. create shaders for compilation

2. compile shaders for execution

3. link shader programs together and the application

4. use shader program when necessary

13

CPUCPU Memory (RAM) GPU GPU Memory

application
program

shader
program

shader
programs

send draw commands

SIMD Unit

Core
SIMD Unit

SIMD Unit

SIMD Unit

SIMD Unit

SIMD Unit

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Executing Shaders on a Multi-core Processor (GPU)

14

Memory

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

SIMD Exec Unit

Cache

Texture Texture

Texture Texture

Tessellate Tessellate

Culling
Rasterizer

Culling
Rasterizer

Culling
Rasterizer

Culling
Rasterizer

Z-buffer Z-buffer Z-buffer Z-buffer

Work Scheduler

Cores for executing shader programs
(programmable), in parallel

Graphics-specific fixed functions
(non-programmable)

and compute resources

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Why A Language?
● High-level, domain-specific language to describe shading behavior

○ Better utilize GPU and can customize

○ In ancient times: assembly on GPUs

○ e.g. GLSL in OpenGL, HLSL in DirectX

● Shading is a local behavior for a specific material

● A rasterizer turns geometries into pixels via sampling but does not include the process of how to figure out what is

the "correct" color of a pixel, e.g. different shading behavior

15

shading

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

OpenGL ES Shading Language (GLSL ES)
● GLSL ES (shortly GLSL) enables programmable stages of graphics pipeline computing using GPU in WebGL

● Different shader stages

○ vertex shader

○ tessellation shader

○ geometry shader

○ fragment shader

○ compute shader

○ ...

16

CPU
Vertex
Shader

Fragment
Shader

Frame
Buffer

Tessellation
Shader

Geometry
Shader

Compute
Shader

Compute
Shader

Compute
Shader

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

WebGL Shader Support
● Safari doesn't work with WebGL2 (why Apple? why?)

● Use Chrome, or Firefox

● webglreport.com/?v=2

17

https://webglreport.com/?v=2

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Basic GLSL Concepts
● types: int, float, vec2, vec3, vec4, mat2, mat3, mat4, sampler2D, struct, array

vec4 position; // position.x, position.yz (result in vec2) to access components
vec4 normal; // x, y, z, w for coordinates
vec4 uv; // s, t, p, q for texture coordinates
vec4 color; // r, g, b, a for color channels

● quantifiers: in, out, inout, uniform

in vec4 color; // an input of a shader
out vec4 colors; // an output of a shader, "varyings" before WebGL 2.0
uniform float ka, kd, ks, p; // constant (but not compile-time constant)

● function: a code block maps a list of parameters to a list of return values

float rand(vec2 co){ // generates a random number

 return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);

}

● flow control: if/else/for statements (in almost every-language)

See a summarized reference note: https://www.khronos.org/files/webgl20-reference-guide.pdf, page 6-8

18

https://www.khronos.org/files/webgl20-reference-guide.pdf

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Attributes and Uniforms
● (Vertex) attributes are user defined

○ Global variables that can be different for each vertex (e.g. normal vector)

○ Read-only, only available in Vertex Shader

○ Definable in program code

● uniforms are

○ Parameters that are the same for many/all vertices/primitives are defined, they are identified via their GLSL variable names

(analogous to attributes)

○ Each variable is assigned a "location" (index)

■ compare strings more efficiently than with every change

○ Can be read in vertex and fragment shaders (read-only)

19

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Shader Programs: Vertex Shader
● Transformation of single vertices and their attributes (e.g. normals, ...)

○ No vertex generation

○ No vertex destruction (handled by clipping)

● Calculation of all attributes that remain constant per vertex

○ Saves computing time compared to the Fragment Shader

○ e.g. lighting by vertex (old-fashioned)

● Set attributes to be interpolated per fragment

○ e.g. normals for per-pixel lighting

● gl_Position: must be written in the vertex shader.

● Determines the position of the vertices, otherwise cannot continue to the subsequent stages of the pipeline.

20

Vertex Shader

1 Vertex 1 Vertex

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Example: A Minimum Vertex Shader

in vec3 position;

uniform mat4 modelViewMatrix;

uniform mat4 projectionMatrix;

void main() {

 gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);

}

21

Built-in output
attribute for Vertex
Shader (required)

Perspective/Orthographic
Projection

Model and View
Transformation

Model Position

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Shader Programs: Fragment Shader
● Allows calculation per result pixel that ends up in the output buffer

○ Per-pixel lighting/shading

○ Sampling of data within the primitive, e.g. for

■ volume rendering

■ Implicit surfaces, glyphs

● The in attributes are interpolated (discussed later) within the primitive (can be turned off)

● Fragments can be discarded: discard

● Fragment operations: Tests, blending and etc.

● The out (in Fragment Shader): stores the color of a fragment.

22

Fragment
Shader

1 Fragment 0-1 Fragment
Per-fragment

Operation

0-1 Fragment

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Example: A Minimum Fragment Shader

out vec4 outColor;

void main() {

 outColor = vec4(1.0, 1.0, 0.0, 1.0); // yellow

}

23

Output color of the current
fragment (pixel)

Red channel
Green

channel
Blue

channel
Alpha

channel

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Shader Support in three.js
Similar to all graphics APIs, three.js treats shader programs as string input, and supports ShaderMaterial and

RawShaderMaterial for customizable shaders.

The RawShaderMaterial compiles raw shaders without any additional information. For the better collaboration with

three.js internal states (e.g. transformation matrices). ShaderMaterial adds convenient default uniform and attributes.

*There are more default uniform and attributes, see https://threejs.org/docs/index.html#api/en/renderers/webgl/WebGLProgram

24

In a fragment shader:

uniform mat4 viewMatrix;
uniform vec3 cameraPosition;

In a vertex shader:

uniform mat4 modelMatrix;
uniform mat4 viewMatrix;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform vec3 cameraPosition;
in vec3 position; // vertex position
in vec3 normal; // vertex normal
in vec2 uv; // vertex UV
in vec4 color; // vertex color

https://threejs.org/docs/index.html#api/en/renderers/webgl/WebGLProgram

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Using ShaderMaterial in three.js
Similar to all graphics APIs, to use shader in three.js, pass shader program as a string to the material of a mesh,

then three.js will do the rest of the job for us:

import vert from './shaders/vs.glsl';

import frag from './shaders/fs.glsl';

... // create geometry

const mesh = new Mesh(geometry, new ShaderMaterial({

 vertexColors: true, // use vertex colors the are specified in three.js

 glslVersion: GLSL3, // use the latest GLSL version (3.0)

 vertexShader: vert, // vert is a loaded string

 fragmentShader: frag, // vert is also a loaded string

}));

this.scene.add(mesh);

25

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Example: A Minimum Vertex Shader using ShaderMaterial

void main() {

 gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);

}

26

in vec3 position; // provided by three.js automatically

uniform mat4 modelViewMatrix; // provided by three.js automatically

uniform mat4 projectionMatrix; // provided by three.js automatically

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1 27

Breakout: Getting Started with GLSL
In folder demos/06-raster2/2-glsl (live demo), look for TODO comments in the main.ts, shaders/vs.glsl and

shaders/fs.glsl, Implements the two shaders (vertex and fragment) for the tetrahedron we had worked in the

previous geometry tutorial breakout.

Answer: How does the colors of the tetrahedron vertices be visualized?

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1 28

Breakout: Getting Started with GLSL
The color propagates along: Vertex color attributes → ShaderMaterial vertex color enabled → VertexShader vertexColor

→ Fragment Shader vertexColor → Fragment Shader outColor → Display

1. Vertex shader implementation

out vec3 vertexColor;

void main() {

 gl_Position = projectionMatrix * viewMatrix * modelMatrix * vec4(

 position.x, position.y, position.z, 1.0

);

 vertexColor = color;

}

2. Fragment shader implementation

in vec3 vertexColor;

out vec4 outputColor;

void main() {

 outputColor = vec4(vertexColor, 1.0);

}

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Shaders are powerful!

29

https://www.shadertoy.com/view/4tByz3

● Shaders can do more than you might think, but also non-trivial to write

● ~800 lines of code:

https://www.shadertoy.com/view/4tByz3

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Compute Shader
● Compute shaders allows general purpose, parallel computing on the GPU (with many many cores)

○ Examples: Physics calculations, particle systems, fluid or substance simulations

● Compute shader is located outside the rendering pipeline

○ No input from inside the pipeline and no output to the pipeline

● Can read and write textures, images and shader buffers

● WebGL Support

○ No support, and will not be supported :(

○ (Yet) very early alpha support in WebGPU and requires Chromium nightly builds

30

https://gpuweb.github.io/gpuweb/

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Debugging Shaders
Difficulties in order to debug shaders:

● print out values: shaders are executed on GPU but print out is on CPU

● set breakpoints: shaders are executed on GPU in parallel and unclear which and what break (sometimes)

Traditional debuggers are less used with increasing coding experience because:

● Most difficult errors in complex programs are conceptual bugs where the wrong thing is being implemented

● It is easy to waste large amounts of time stepping through variable values with without detecting such cases

● Tools are platform and hardware specific. For example: RenderDoc (no macOS support, why Apple? why?)

⇒ Review the code carefully can solve almost all problems

Tool-independent, most general approach: Just render value as color then use a color picker to get the output value

31

https://renderdoc.org/

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Breakout: Experiment with Shaders

32

Enter folder demos/06-raster2/3-shaders (live demo)

Look for TODO comments in the src/shaders folder.

Render the bunny:

1. Using z coordinate as vertex color

2. Using vertex normal as vertex color

3. Using random value as vertex color

4. Adding random noise to the vertex position

…

Be creative ;-)

https://mimuc.github.io/cg1-ss21/06-raster2/3-shaders/

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Summary
● We covered:

○ Issues with Bresenham and scan line algorithms and an alternative drawing approach that using point-in-triangle assertion

○ Aliasing and antialiasing sampling issue in drawing

○ The modern rasterization rendering pipeline and its components

○ GLSL as a programming language for writing shader programs that execute on a GPU

Check the canonical OpenGL book for the more details on a "historical" graphics standard:

To learn more about the history of shading language, check out these research papers:

33

● Robert L. Cook. 1984. Shade trees. SIGGRAPH Comput. Graph. 18, 3 (July 1984), 223–231.

● Pat Hanrahan and Jim Lawson. 1990. A language for shading and lighting calculations. SIGGRAPH Comput. Graph. 24, 4 (Aug. 1990),

289–298.

https://dl.acm.org/doi/abs/10.1145/800031.808602
https://dl.acm.org/doi/abs/10.1145/97879.97911

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1 34Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

How to create pictures like this?

Source: Cyberpunk 2077

Changkun Ou, David Englmeier, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Next
Texture

35

