
Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Computer Graphics 1

3 Geometry

1

Summer Semester 2021

 Ludwig-Maximilians-Universität München



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Tutorial 3: Geometry

2

● Geometric Representations

● Bézier Curves and Interpolation

● Polygon-based Surface Representation

● Mesh Sampling

● Summary



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Geometric Representations
Geometry is the foundation of all graphics, and its representation gives the language for describing shape

● Boundary representation: deeply embed into modern graphics, and their algorithms are rich and mature

○ Curve: Bézier curves, B-splines...

○ Surface

■ Bézier surface

■ Polygon mesh: Triangles, quads, etc.

In active research:

● Volumetric representation, e.g. Voxel, tetrahedron, etc.

● Parametric representation

● Procedural/generative models

And there are more geometry representations of course!

3



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Example: Constructive Solid Geometry (CSG)
CSG is a implicit geometric representation that allows 

to represent complex models as a series of boolean 

operations between primitives.

4

union (OR) intersection (AND)difference (NOT) exclusive or (XOR)

CSG objects can be represented by binary trees, where leaves represent primitives 

and nodes represent operations



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Example: Advantages and Disadvantages of CSG
● Advantage

○ Minimum steps: represent solid objects as hierarchy of boolean operations

○ Easy to express a complex implicit surface

○ Low storage space needed: due to the simple tree structure and primitives

○ Easy to convert a CSG model to a polygon mesh (but not vise versa)

○ ...

● Disadvantage

○ Impossible to construct non-solid shape, e.g., organic models

○ High computational power needed to derive boundaries, faces and edges ⇒ needed for interactive manipulation

○ ...

5



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Tutorial 3: Geometry

6

● Geometric Representations

● Bézier Curve and Surface

○ Bézier Curve: de Casteljau Algorithm and Algebraic Form

○ Piecewise Bézier Curves

○ Bézier Patches

● Polygon-based Surface Representation

● Mesh Sampling

● Summary



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Bernstein-Bézier Curve
● (Bernstein-)Bézier curve is a parametric curve representation and the de facto standard for graphics design

● It has many important properties such as the de Casteljau algorithm and elegant geometric interpolations

● Applications

○ Describe camera paths to control camera movements

○ Describe animation curves to control object movements

○ ...

7

Cubic Bézier

4 control points

Quadratic Bézier

3 control points



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

The de Casteljau algorithm offers the most intuitive way to describe a Bézier curve, but requires more computation.

Consider four points (cubic Bézier) as an example:

de Casteljau Algorithm

8

Control Points



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

The coordinates of      is linearly interpolated via parameter   , i.e.:

Let                      , and                                                    . Therefore, we have:

Implement de Casteljau Algorithm: Interpolation

9



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1 10

Breakout: Implement de Casteljau Algorithm
Enter folder demos/03-geometry/1-curve (live demo)

1. Look for TODO comment in the main.ts, and implement the 

interpolate function for the de Casteljau algorithm

2. Change the sample slider and see how Bézier is sampled, answer: 

● What happens when sample is below 5?

● How many sample points are good enough to show the Bézier curve?

3. Toggle the show checkbox and change the parameter t, answer: 

● What happens when t = 0 and t = 1?

https://github.com/mimuc/cg1-ss21/tree/main/demos/03-geometry/1-curve
https://mimuc.github.io/cg1-ss21/03-geometry/1-bezier/


Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Bézier Curve: Algebraic Formula
Bézier curve can be further described in an algebraic formula.

For a quadratic Bézier curve:

For a cubic Bézier curve:

…

In general, Bézier curve can be written as 

where

is called Bernstein basis.

11

Binomial Coefficient



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Bézier Curve: Properties

1. An affine transformation of a Bézier curve is the same as transforming its control points (Q: how to prove this?)

No need to transform every point on a curve/surface ⇒ good performance!

2. The curve lies within a convex hull of its control points

3. Interpolates endpoints (nice boundary condition)

12



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Piecewise Bézier Curves

13

Cubic Bézier curve
with 4 control points

● The Cubic Bézier curve with 4 control points is widely used 

(in almost every design software)

● The connection of the two head/tail control points forms a 

tangent of the Bézier curve

● A "seamless" curve is guaranteed if all given points are 

differentiable or C1 continuity

⇒ Left and right tangent slopes are equal for a connecting point

differentiable
C1 continuity

non-differentiable
C0 continuity



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1 14

Breakout: Experiment with Bézier Curve
Enter folder demos/03-geometry/1-curve (live demo)

Play around with a Bézier curve created by many control points.

1. Look for TODO comment in the main.ts and add new points or 

remove existing ones from this.controlPoints.

2. Drag the control points directly from the visualization.

Spend 2 minutes to try to reproduce the Bézier curve on the right 

side.

https://github.com/mimuc/cg1-ss21/tree/main/demos/03-geometry/1-curve
https://mimuc.github.io/cg1-ss21/03-geometry/1-bezier/


Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Higher-order Bézier Curves

15

Key issue: Very hard to control!

Can you imagine which control point changes which part of the curve?

N-order Bézier Curve Playground: https://www.desmos.com/calculator/xlpbe9bgll

https://www.desmos.com/calculator/xlpbe9bgll


Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Bicubic Bézier Surface (Patch)
4 cubic Bézier curves determine a bicubic Bézier surface:

Each cubic Bézier curve needs 4 control points, with 4 curves, 4x4 = 16 control points in total. 

Then, on an orthogonal direction, each Bézier curve contributes one control point.

16

http://acko.net/blog/making-mathbox/

http://acko.net/blog/making-mathbox/


Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Tutorial 3: Geometry

17

● Geometric Representations

● Bézier Curve and Surface

● Polygon-based Surface Representation

○ Meshes and Wavefront OBJ format

○ Geometry Buffers

● Mesh Sampling

● Summary



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Vertex, edge, and face are the basic geometric primitives for constructing a polygonal-based surface

● A vertex is a point abstraction, and it does not only represent position, but can also contain other information

● An edge represents an oriented connectivity of two vertices

● A face is an oriented closed edge loop that can be either a triangle, quadrilateral, or arbitrary polygon

Linear Geometric Primitives

18

Vertex Edge Face



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Polygon-based Surface
To represent a smooth surface in discrete settings, one can use a 

collection of polygons, which often refer to polygon soup. In a polygon 

soup, an edge only connects to a single face.

Polygon mesh adds more constraints on a polygon soup where an edge 

connects multiple faces, such as:

● Triangle mesh

● Quadrilateral mesh (or just quad mesh)

● Quad-dominant Mesh (often refer to a mixture of triangle and quad 

mesh but mostly quads)

● ...

19

polygon soup

triangle mesh quad mesh



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Triangle vs. Quad Mesh
● Triangle Mesh

○ a triangle is the simplest polygon, and other polygons can be turned into triangles

○ a triangle is guaranteed to be planar (linear element)

○ a triangle has well-defined interior (Q: How to check if a point is inside a triangle?)

○ it is easy to compute interactions between a triangle mesh and rays (later in ray tracing)

● Quad Mesh

○ quad meshes are much easier for modeling smooth and deformable surface

○ converting a quad mesh to a triangle mesh is a simple process (Q: Why?)

○ quad meshes have many sub-regions with grid-like connectivity (flow line or edge loop)

○ quad meshes are better for subdivisions than tri-meshes

20

triangle mesh

quad mesh



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Geometry requires a vertex at a given position in a given metric space, which is distance relevant

Topology concerns vertex connectivities only, which is distance irrelevant

The connectivity information can appear in either vertex or edge, and constitutes an important concept:

Manifold polygon mesh: Each edge is incident (touches) to one or two faces, and each faces is incident to a vertex from 

a closed or open fan.

Aside: Non-manifold geometry cause ill-posed situation where geometry processing algorithms often fail to deal, yet still challenging and in active research. Either in geometry modeling or computation a goal is 

to avoid non-manifold geometry (tedious and non-trivial).

Manifold vs. Non-Manifold

21

non-manifolds 
polygon mesh

closed fan open fan

manifold
polygon mesh

on vertex on edge



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Normals
Normals are an important property on a continuous surface.

In discrete settings, there are two types of normals for a triangle mesh:

● Face normal: has unit length and is orthogonal with the given triangle

○ Face normal of a triangle is well defined (Q: why and how to compute?)

● Vertex normal: is an interpolation from the surrounding face normals

○ There are multiple (different) definitions for vertex normals

○ A possible definition is the average of the surrounding face normals

○ Vertex normals can also be manually defined, i.e. ground truth vertex normals

The orientation of a face describes a normal either inward-pointing or

outward-pointing. Depending on left- or right handed system, we assume:

● Outward-pointing normals are determined by right-hand rule 

● Inward-pointing normals point to the opposite direction of outward-pointing normals

22

vertex 
normal

face 
normal

face 
normal



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

● The Wavefront object file format is one of the earliest developed 

polygon-based surface geometry definitions

● 3D software (eg. Blender) allows user to manually change geometry and 

exports the final result to a .obj file with predefined specification

● The format stores geometric information such as vertex positions, vertex 

normals, vertex UV coordinates (2D vector, later discuss in texture session) in an array 

together with a face adjacency list, that contains oriented vertex indices

● See an example of tetrahedron on the right side:

The Wavefront Object File Format (.obj)

23

1 v -0.363322 -0.387725 0.859330

2 v -0.550290 -0.387725 -0.682297

3 v -0.038214 0.990508 -0.126177

4 v 0.951827 -0.215059 -0.050857

1 vt 0.436598 0.753560

2 vt 0.833648 0.512884

3 vt 0.833648 1.000000

4 vt 0.436598 0.464299

5 vt 0.000000 0.195168

6 vt 0.436598 0.000000

7 vt 0.000000 0.685842

8 vt 0.423825 0.464299

9 vt 0.423825 0.925956

10 vt 0.436598 0.251320

11 vt 0.823853 0.000000

12 vt 0.823853 0.512884

1 vn 0.3538 0.2340 -0.9056

2 vn 0.4727 0.4361 0.7658

3 vn 0.1202 -0.9926 -0.0146

4 vn -0.9454 0.3050 0.1147

1 f 3/1/1 4/2/1 2/3/1

2 f 3/4/2 1/5/2 4/6/2

3 f 4/7/3 1/8/3 2/9/3

4 f 2/10/4 1/11/4 3/12/4

Vertices

UVs (later)

Normals

Faces



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

All vertices are ordered where the vertex index (starts from 1) is implied 

from their order in the file.

Lines starting with v represent vertex positions*:

v x y z

where x, y, z are the position coordinates

Lines starting with vt represent vertex UV coordinates and vn describes 

vertex normal coordinates:

vt x y

vn x y z

OBJ File Format: Vertex Data

24

1 v -0.363322 -0.387725 0.859330

2 v -0.550290 -0.387725 -0.682297

3 v -0.038214 0.990508 -0.126177

4 v 0.951827 -0.215059 -0.050857

1 vt 0.436598 0.753560

2 vt 0.833648 0.512884

3 vt 0.833648 1.000000

4 vt 0.436598 0.464299

5 vt 0.000000 0.195168

6 vt 0.436598 0.000000

7 vt 0.000000 0.685842

8 vt 0.423825 0.464299

9 vt 0.423825 0.925956

10 vt 0.436598 0.251320

11 vt 0.823853 0.000000

12 vt 0.823853 0.512884

1 vn 0.3538 0.2340 -0.9056

2 vn 0.4727 0.4361 0.7658

3 vn 0.1202 -0.9926 -0.0146

4 vn -0.9454 0.3050 0.1147

1 f 3/1/1 4/2/1 2/3/1

2 f 3/4/2 1/5/2 4/6/2

3 f 4/7/3 1/8/3 2/9/3

4 f 2/10/4 1/11/4 3/12/4

Vertices

UVs (later)

Normals

Faces

vertex 
indices

1

2

3

4

*The actual OBJ file format contains more details such as a vertex position can use homogeneous representation, see here for a full format specification. For simplicity, we assume not using homogeneous 

representation in .obj file format.

http://paulbourke.net/dataformats/obj/


Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

1 v -0.363322 -0.387725 0.859330

2 v -0.550290 -0.387725 -0.682297

3 v -0.038214 0.990508 -0.126177

4 v 0.951827 -0.215059 -0.050857

1 vt 0.436598 0.753560

2 vt 0.833648 0.512884

3 vt 0.833648 1.000000

4 vt 0.436598 0.464299

5 vt 0.000000 0.195168

6 vt 0.436598 0.000000

7 vt 0.000000 0.685842

8 vt 0.423825 0.464299

9 vt 0.423825 0.925956

10 vt 0.436598 0.251320

11 vt 0.823853 0.000000

12 vt 0.823853 0.512884

1 vn 0.3538 0.2340 -0.9056

2 vn 0.4727 0.4361 0.7658

3 vn 0.1202 -0.9926 -0.0146

4 vn -0.9454 0.3050 0.1147

1 f 3/1/1 4/2/1 2/3/1

2 f 3/4/2 1/5/2 4/6/2

3 f 4/7/3 1/8/3 2/9/3

4 f 2/10/4 1/11/4 3/12/4

Vertices

UVs (later)

Normals

Faces

OBJ File Format: Face Data

25

1

2

3

4
1

3
4

Lines starting with f represent a single face described by a list of vertices. 

Each vertex concatenates its information using slash (/)

● Triangle face: 

f v/vt/vn v/vt/vn v/vt/vn

● Quad face:

f v/vt/vn v/vt/vn v/vt/vn v/vt/vn

With more group of vertices, a face can be ngon (polygon with n edges.)



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Vertex Buffer
Modern GPUs store a triangle mesh using a dense memory buffer, i.e. vertex buffer.

To create a geometry, one must interpret a vertex buffer using indices.

In three.js, BufferGeometry is the way of representing all (polygon-based) geometry. All geometry data is stored using 

BufferAttributes, and each BufferAttribute represents an array of one type of data: positions, normals, UVs, etc

By default, the vertex index starts from 0 (Note that this is different from an .obj file, where the index starts from 1)

26

x y z x y z x y z x y z x y zvertex positions

x y z x y z x y z x y z x y zvertex normals

vertex uvs u v u v u v u v u v

vertex index is 1

https://threejs.org/docs/#api/en/core/BufferGeometry
https://threejs.org/docs/#api/en/core/BufferAttribute
https://threejs.org/docs/#api/en/core/BufferAttribute


Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Breakout: Visualize Tetrahedron using BufferGeometry

27

Enter folder demos/03-geometry/2-buffers (live demo).

Complete the vertex indices that constructs the faces of a tetrahedron below the TODO comment. 

// vertex buffer object

const vbo = new Float32Array([

  -0.363322, -0.387725, 0.85933,

  ...

]);

// create a buffer geometry

const g = new BufferGeometry();

g.setIndex([

  // TODO: fill the vertex indices

]);

g.setAttribute('position', new BufferAttribute(vbo, 3));

https://github.com/mimuc/cg1-ss21/tree/main/demos/03-geometry/2-buffers
https://mimuc.github.io/cg1-ss21/03-geometry/2-buffers/


Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Tutorial 3: Geometry

28

● Geometric Representations

● Bézier Curve and Surface

● Polygon-based Surface Representation

● Mesh Sampling

○ Mesh Simplification

○ Mesh Subdivision

● Summary



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Mesh Operators
Mesh subdivision (upsample): Increase the number of polygons to smoothly approximate its shape

● Loop subdivision for triangle meshes [Loop, 1987]

● Catmull-Clark subdivision for quad or triangle meshes (in Blender)

● ...

Mesh simplification (downsample): Reducing number of polygons while preserving the overall shape 

● Vertex Clustering [Rossignac and Borrel, 1993]

● Melax's Curvature-based Simplification [Melax, 1998]
 (in three.js)

● Quadric-error Metric Simplification (in Blender)

● ...

29

Rossignac, J. and Borrel, P., 1993. Multi-resolution 3D approximations for rendering complex scenes. In Modeling in computer graphics (pp. 455-465). Springer, Berlin, Heidelberg.

Melax, S., 1998. A simple, fast, and effective polygon reduction algorithm. Game Developer, 11, pp.44-49.

Loop, C.T., 1987. Smooth subdivision surfaces based on triangles, Master's thesis Department of Mathematics. University of Utah.

https://en.wikipedia.org/wiki/Catmull%E2%80%93Clark_subdivision_surface


Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Vertex Clustering
Vertex clustering [Rossignac and Borrel, 1993] is one of the simplest mesh simplification algorithms. Procedure:

1. Divide the 2D/3D space into grids

2. For each cell

a. replace all nodes by their barycenter (center of mass)

b. reconnect all edges to the new point (barycenter)

Example: 22 triangles are simplified to 15 triangles (31.8%).

30

Rossignac, J. and Borrel, P., 1993. Multi-resolution 3D approximations for rendering complex scenes. In Modeling in computer graphics (pp. 455-465). Springer, Berlin, Heidelberg.



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Vertex Clustering: Inconsistency
Depending on the position of vertices, the same geometry can lead to inconsistent results:

These inconsistency leads to the major drawback of vertex clustering: topology has changed

31

Kok-Lim Low and Tiow-Seng Tan. 1997. Model simplification using vertex-clustering. In Proceedings of the 1997 symposium on Interactive 3D graphics (I3D ’97). ACM, New York, NY, USA, 75–ff.



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Vertex Clustering: Topology Change
● Non-manifold → Manifold

● Manifold → Non-manifold (Q: Try to name an example)

32

From non-manifold to manifold

Not even a face anymore

Non-manifold often causes problems both in editing and rendering.



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Progressive Meshes and Levels of Detail (LOD)
● Instead of vertex clustering, edge collapse is more widely used to simplify a polygon mesh progressively

● Progressive mesh simplification generates different levels of detail (LOD) 

Basic idea: Collapse an edge then merge one vertex into the other

Q: How many vertices, faces and edges are removed in each edge collapse?

This process can proceed progressively by selecting the best (?) edge iteratively.

33

0% reduction

80% reduction

95% reduction

99% reduction



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

How much does it cost to collapse an edge?

A possible way: cost = edge length     curvature

where       is the set of triangles that contains     ,          is the set of triangles that contains both     and     .

We know the cost of collapsing an edge.  But if we collapse an edge, the costs of neighbors can also be affected (why?)

How do we efficiently simplify a mesh progressively?

Data structure to use: priority queue or min-heap.

● cost of accessing the minimal element: O(1)

● cost of manipulating the affected elements: O(log(n))

Select and Update Edge Cost

34

Melax, S., 1998. A simple, fast, and effective polygon reduction algorithm. Game Developer, 11, pp.44-49.

before after



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1 35

Breakout: Repeat Upsampling and Downsampling
An interesting procedure of processing a given mesh is to repeat upsampling and downsampling.

In the provided live demo, let's set subdivision number = 2 (or any others), reduction ratio = 95% (or any others).

Answer this question: what is the result of           ?

subdivision simplification subdivision simplification subdivision

https://mimuc.github.io/cg1-ss21/03-geometry/3-sampling/


Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Repeated Up- and Downsampling
Subdivision number = 2, reduction ratio of number of vertices = 98%:

Q: Is it possible to preserve the #faces and mesh quality when repeating simplification and subdivision?

36



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Mesh Aliasing
Repeated up- and downsampling can be done in different ways:

1. subdivision → simplification → subdivision → simplification → …

#vertices/#faces is reduced over iteration

#vertices/#faces is increased over iteration

2. simplification → subdivision → simplification → subdivision → …

#vertices/#faces is reduced over iteration

#vertices/#faces is increased over iteration

Observation: The shape is still not exactly preserved (further verify by yourself)

When the upsampling is not an inverse operator of downsampling, and vise versa, it causes an aliasing issue.

⇒ Aliasing errors occur if the sampling pattern is not perfectly aligned with the features in the original mesh

We will see more aliasing issues :)

37



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Tutorial 3: Geometry

38

● Geometric Representations

● Bézier Curves and Interpolation

● Polygon-based Surface Representation

● Mesh Sampling

● Summary



Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Summary
● We covered:

○ Different geometric representations and CSG as an example of implicit geometry representation

○ How to use the de Casteljau algorithm compute Bézier curves, and its algebraic definition

○ Polygon-based mesh surface, the wavefront object file format, and vertex buffer

○ Two common mesh sampling operations: simplification and subdivision, and an aliasing issue in mesh sampling

● If you are interested in geometry, there is an advanced course "Geometry Processing"

● We also highly recommend to check out these fascinating books:

39

http://mimuc.de/gp


Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1Changkun Ou, Florian Lang, Prof. Butz | LMU Munich CG1 SS21 | mimuc.de/cg1

Next
Camera Viewing Pipeline

40


