Simplicity is Complicated: On the Balance of Performance and Knobs

Changkun Ou LMU Munich

IDC 2019 Autumn Vienna, Austria Oct. 9, 2019 Changkun Ou (欧长坤)
 Tschang-Kwën Ou
 / fşʰaŋkuən ɤư /

https://changkun.de

- PhD student / Prof. Butz
- Expertise: Web Techs , Machine Learning, Distributed Systems

- Contributor of Tensorflow, Go, etcd, redis, ... (100k+ ****** projects)
- Author of C++ and Go books (6k+ projects)
- Many many other open source contributions...

Mesh simplification (MS)

Mesh simplification (MS)

MS is largely applied

Mesh simplification (MS)

MS is largely applied

MS has been "solved" 20 years ago [Hoppe'96] [Garland'97]

Alpha Complex/Shape Build a Polyline with NonFaux Edges CSG Operation	
Close Holes	
Crease Marking with NonFaux Edges	
Curvature flipping ontimization	
Cut mesh along crease edges	
Delaunay Triangulation	
Generate Scalar Harmonic Field	
Iso Parametrization Build Atlased Mesh	
Iso Parametrization Remeshing	
Iso Parametrization transfer between meshes	
Iso Parametrization: Main	
Marching Cubes (APSS)	
Marching Cubes (RIMLS)	
Mesh aging and chipping simulation	
Planar flipping optimization	
Points Cloud Movement	
Refine User-Defined	
Simplfication: MC Edge Collapse	
Simplification: Clustering Decimation	
Simplification: Quadric Edge Collapse Decimation	
Simplification: Quadric Edge Collapse Decimation (v	v
Subdivision Surfaces: Butterfly Subdivision	
Subdivision Surfaces: Catmull-Clark	
Subdivision Surfaces: LS3 Loop	
Subdivision Surfaces: Loop	
Subdivision Surfaces: Midpoint	
Surface Reconstruction: Ball Pivoting	
Surface Reconstruction: VCG	l
Tri to Quad by 4-8 Subdivision	
Tri to Quad by smart triangle pairing	
Turn into Quad-Dominant mesh	
Turn into a Pure-Triangular mesh	
Uniform Mesh Resampling	
Vertex Attribute Seam	
Voronoi Filtering	
Screened Poisson Surface Reconstruction	

MeshLab

		🧶 🔿 🖉 🧔 🖉 Simplification: Quadr	ic Edge Collapse Decimation	
		Simplify a mesh using a Qua Strategy; better than cluster	dric based Edge Collapse ing but slower	
		Target number of faces	435653	
		Percentage reduction (01) 0	
		Quality threshold	0.3	
		Preserve Boundary of t	he mesh	
		Boundary Preserving Weig	ht 1	
		Preserve Normal		
		Preserve Topology		
		Optimal position of simplification	olified vertices	
		Weighted Simplification		
		Post-simplification clea	ning	
		Simplify only selected f	aces	
		Default	Help	
1	(with text)	Close	Apply	
		K		Blender
	8~	🔲 door		Ŕ
l	4¥	Add Modifier		
l	ĉi	▼ 🗹 Decimate		
1	-	Apply		Сору
		Collapse	Un-Subdivide	Planar
		Ratio:		1.0000
	16	• • •	↔ Factor:	1.0000
	S	Face Count: 7,936	🚺 Trian	ngulate
- 18				
			Sym	metry X ~

•			Reduce Options	
Edit	Help			
		🖌 Keep orig	nal	
•	Reduction Method			
	Reduction method	Percentage		
	Percentage	48.4337		
	Preserve quads	0.9807		
	Sharpness	0.0169		
	Symmetry type	Plane		
	Symmetry tolerance	0.0100		
		V7		
	Symmetry plane	X2 Y		
-	Feature Preservation	Note: set pre	serve quads to < 1.0 to use symmetry	
	Mesh borders	✓ 0 5012		1
		4 0.5012		
	UV borders	♥ 0.5000		
	Color borders	✓ 0.5000		
	Material borders	✓ 0.5000		1
	Hard edges	✓ 0.5000		•
	Crease edges	✓ 0.5000		
-	Advanced Options			
	Vertex index map			
	Reduce		Apply	Close

Autodesk Maya

Naïve MS

2-Manifold locally resembles 2D Euclidean space.

```
// Polyreduce reduces number of polygons
// while preserving local topologies.
func Polyreduce(m *Mesh, c *Criteria) {
    for !m.Eval(c) {
        local := m.Pick()
        local.Simplify()
    }
}
```

Issues:

Non-scalable (serialized process)
 NP-hard computation
 ...

1. Reduction speed \rightarrow **Computation complexity**

- 1. Reduction speed \rightarrow **Computation complexity**
- 2. Expert preference \rightarrow **Reduction quality**
- 3. Manual intervention \rightarrow **Automation level**

Can you tell the difference?

- 1. Reduction speed \rightarrow **Computation complexity**
- 2. Expert preference \rightarrow **Reduction quality**
- 3. Manual intervention \rightarrow **Automation level**

Can you tell the difference?

The Ultimate MS Program

The Ultimate MS Program				
Target #Poly:				
	Run!			

The Ultimate MS Program

1. Reduction speed \rightarrow Computation complexity

Solution: Thread multiplexing 🔌 🔌 核

- 2. Expert preference \rightarrow Reduction quality
- 3. Manual intervention \rightarrow Automation level

Solution: Hyperparameter reduction & Imitation learning 😎 🤓 🥵

Computation Complexity: From Parallelism to Concurrency

Concurrent MS

```
// Polyreduce reduces number of polygons
// while preserving local topologies.
func Polyreduce(m *Mesh, c *Criteria) {
```

```
for !m.Eval(c) {
            local := m.Pick()
            local.Simplify()
                                  Inspiration
// SGD implements mini-batch
// stochastic gradient descent.
func SGD(m *Model, d *Dataset) {
      for !m.Converge() {
            miniB:= d.Batch()
            m.GradientDescent(miniB)
}
```

Concurrent MS

// Polyreduce reduces number of polygons
// while preserving local topologies.
func Polyreduce(m *Mesh, c *Criteria) {


```
func Polyreduce(m *Mesh, c *Criteria) {
     // SPEEDUP1: build workQ concurrently
     for local := m.Pick(); local != nil; {
           sched.Submit(func() {
                 quality, ok := local.Eval(c)
                 if ok {
                       workQ.Push(quality, local)
           })
           local = m.Pick()
     sched.Wait()
                       // sync barrier
     // SPEEDUP2: run workQ concurrently
     for w := workQ.Pop(); w != nil; {
           sched.Submit(w.Simplify)
           w = workQ.Pop()
     sched.Wait()
                    // sync barrier
var sched Sched // M:N work-steal scheduling
func (s *Sched) Submit(f func()) { ... }
```

Thread Multiplexing: Work-steal scheduling

We are not even close

We are not even close

"MS is a solved problem!"

Quality & Automation: From Fully Automatic to Semi Automatic

$\sum_{model} cost(model, method) = const.$

T = [MS + DT(p)] * A(p)

If p1 > p2 :

T1 - T2 = MS * [A(p1) - A(p2)] + [DT(p1) * A(p1) - DT(p2) * A(p2)]

T = [MS + DT(p)] * A(p)

If
$$p1 > p2$$
:
T1 - T2 = MS * [A(p1) - A(p2)] + [DT(p1) * A(p1) - DT(p2) * A(p2)]
> MS * [A(p1) - A(p2)] + [DT(p2) * A(p1) - DT(p2) * A(p2)] Hick's Law

T = [MS + DT(p)] * A(p)

If
$$p1 > p2$$
:
T1 - T2 = MS * [A(p1) - A(p2)] + [DT(p1) * A(p1) - DT(p2) * A(p2)]
> MS * [A(p1) - A(p2)] + [DT(p2) * A(p1) - DT(p2) * A(p2)]
= [MS + DT(p2)] * [A(p1) - A(p2)]
 \Rightarrow Reduce attempts

```
ConcurrentMS
type PolyReduce interface {
    Upload(m *Model) (OpID string)
    Upload(OpID string, c *Config)
    Run(OpID string)
                                    // 1m #poly \approx 1 min \rightarrow 1 model
    Download(OpID string) (m *Model)
                                                                Available, but untested
type ProPolyReduce interface {
    Upload(m *Model) (SessID string)
    Run(SessID string) (OpIDs []OpID) // 1m #poly \approx 2 min \rightarrow 4 models
    Eval(OpIDs []OpID, Scores []int)
    Download(OpID string) (m *Model)
```

Automation, Speed, Quality Tradeoff

Automation, Speed, Quality Tradeoff

Automation, Speed, Quality Tradeoff

Bernhard Riemann (1826-1866)

Simplicity is Complicated: On the Balance of Performance and Knobs

Changkun Ou LMU Munich

IDC 2019 Autumn Vienna, Austria Oct. 9, 2019

"The performance improvement does not materialize from the air, it comes with code complexity increase."

Why MS is a well-studied problem to you? Or, why it isn't?

When did you start thinking about using MS? What are your expectations from MS? Why? How did you evaluate MS outcomes in your 3D projects?

What are principles qualifying 3D Artists v.s. Non-3D Artists? Is it quantitative measurable? Why?

When did industrial MS fail to your case? Why?

What is your maximum tolerance of X to MS? Why? where X = speed, features preservation, and ...

How could human solve retopology so incredible? What did we miss in MS?

Any thing in mind?

Random