
Simplicity is Complicated:
On the Balance of Performance and Knobs

Changkun Ou
LMU Munich

IDC 2019 Autumn
Vienna, Austria
Oct. 9, 2019

󾓭 Changkun Ou (欧长坤)
󾓨 Tschang-Kwën Ou
󾓪 / t͡ ʂʰɑŋkuən ɤʊ /

● PhD student / Prof. Butz
● Expertise: Web Techs , Machine Learning, Distributed Systems

● Contributor of Tensorflow, Go, etcd, redis, … (100k+ 🌟 projects)
● Author of C++ and Go books (6k+ 🌟 projects)
● Many many other open source contributions...

2

https://changkun.de

Mesh simplification (MS)

3

Mesh simplification (MS)

MS is largely applied

4

Mesh simplification (MS)

MS is largely applied

MS has been "solved" 20 years ago [Hoppe'96] [Garland'97]

5

6

Blender

Autodesk Maya
MeshLab

Changkun Ou · Simplicity is Complicated · 2019.10

2-Manifold locally resembles 2D Euclidean space.

Issues:

1. Non-scalable (serialized process)
2. NP-hard computation
3. ...

Naïve MS

// Polyreduce reduces number of polygons
// while preserving local topologies.
func Polyreduce(m *Mesh, c *Criteria) {

for !m.Eval(c) {
local := m.Pick()
local.Simplify()

}

}

7

Changkun Ou · Simplicity is Complicated · 2019.10

What really matters? Practitioner's Perspective

8

1. Reduction speed → Computation complexity

Changkun Ou · Simplicity is Complicated · 2019.10

What really matters? Practitioner's Perspective

9

1. Reduction speed → Computation complexity

2. Expert preference → Reduction quality

3. Manual intervention → Automation level

🙂 🙂 🙂
Can you tell the difference?

Changkun Ou · Simplicity is Complicated · 2019.10

What really matters? Practitioner's Perspective

10

1. Reduction speed → Computation complexity

2. Expert preference → Reduction quality

3. Manual intervention → Automation level

😡 🙂 😡
Can you tell the difference?

Changkun Ou · Simplicity is Complicated · 2019.10

The Ultimate MS Program

11

Run!

_____________Target #Poly:

The Ultimate MS Program

Changkun Ou · Simplicity is Complicated · 2019.10

The Ultimate MS Program

12

Run!

_____________Target #Poly:

The Ultimate MS Program

1. Reduction speed → Computation complexity

 Solution: Thread multiplexing 🔥🔥🔥

2. Expert preference → Reduction quality
3. Manual intervention → Automation level

 Solution: Hyperparameter reduction & Imitation learning 😎😎😎

Impractical

Computation Complexity:
From Parallelism to Concurrency

13

Changkun Ou · Simplicity is Complicated · 2019.10

Concurrent MS

14

// Polyreduce reduces number of polygons
// while preserving local topologies.
func Polyreduce(m *Mesh, c *Criteria) {

for !m.Eval(c) {
local := m.Pick()
local.Simplify()

}

}

// SGD implements mini-batch
// stochastic gradient descent.
func SGD(m *Model, d *Dataset) {

for !m.Converge() {
miniB:= d.Batch()
m.GradientDescent(miniB)

}

}

Inspiration

Changkun Ou · Simplicity is Complicated · 2019.10

Concurrent MS

func Polyreduce(m *Mesh, c *Criteria) {

// SPEEDUP1: build workQ concurrently
for local := m.Pick(); local != nil; {

sched.Submit(func() {
quality, ok := local.Eval(c)
if ok {

workQ.Push(quality, local)
}

})
local = m.Pick()

}
sched.Wait() // sync barrier

// SPEEDUP2: run workQ concurrently
for w := workQ.Pop(); w != nil; {

sched.Submit(w.Simplify)
w = workQ.Pop()

}
sched.Wait() // sync barrier

}

var sched Sched // M:N work-steal scheduling
func (s *Sched) Submit(f func()) { … }

15

// Polyreduce reduces number of polygons
// while preserving local topologies.
func Polyreduce(m *Mesh, c *Criteria) {

for !m.Eval(c) {
local := m.Pick()
local.Simplify()

}

}

// SGD implements mini-batch
// stochastic gradient descent.
func SGD(m *Model, d *Dataset) {

for !m.Converge() {
miniB:= d.Batch()
m.GradientDescent(miniB)

}

}

Inspiration

Changkun Ou · Simplicity is Complicated · 2019.10

Thread Multiplexing: Work-steal scheduling

16

Work

P

Thread Thread

Work

PWorkWork WorkWork

WorkWork

Local Run Q Local Run Q

Global Work QWork

Changkun Ou · Simplicity is Complicated · 2019.10

We are not even close

17

640k#poly

29k#poly

119k#poly

126k#poly

Handcraft
 40 hours+

My approach
 ~30s

[Hoppe96]+[Garland97]
in Blender and many other 3D softwares

~6min

Ground truth

Changkun Ou · Simplicity is Complicated · 2019.10

We are not even close

18

640k#poly

29k#poly

119k#poly

126k#poly

Handcraft
 40 hours+

My approach
 ~30s

[Hoppe96]+[Garland97]
in Blender and many other 3D softwares

~6min

Ground truth

"MS is a solved problem!"

Quality & Automation:
From Fully Automatic to Semi Automatic

19

Changkun Ou · Simplicity is Complicated · 2019.10

No Free Lunch [Wolpert'96, Wolpert and Macready'97]

20

Changkun Ou · Simplicity is Complicated · 2019.10

Modeling Human Cost in MS

21

T = [MS + DT(p)] * A(p)

If p1 > p2 :

T1 - T2 = MS * [A(p1) - A(p2)] + [DT(p1) * A(p1) - DT(p2) * A(p2)]

Changkun Ou · Simplicity is Complicated · 2019.10

Modeling Human Cost in MS

22

T = [MS + DT(p)] * A(p)

If p1 > p2 :

T1 - T2 = MS * [A(p1) - A(p2)] + [DT(p1) * A(p1) - DT(p2) * A(p2)]

 > MS * [A(p1) - A(p2)] + [DT(p2) * A(p1) - DT(p2) * A(p2)]
Hick's Law

Changkun Ou · Simplicity is Complicated · 2019.10

Modeling Human Cost in MS

23

T = [MS + DT(p)] * A(p)

If p1 > p2 :

T1 - T2 = MS * [A(p1) - A(p2)] + [DT(p1) * A(p1) - DT(p2) * A(p2)]

 > MS * [A(p1) - A(p2)] + [DT(p2) * A(p1) - DT(p2) * A(p2)]

 = [MS + DT(p2)] * [A(p1) - A(p2)]

 ⇒ Reduce attempts

Hick's Law

Changkun Ou · Simplicity is Complicated · 2019.10

type PolyReduce interface {
 Upload(m *Model) (OpID string)
 Upload(OpID string, c *Config)
 Run(OpID string) // 1m #poly ≈ 1 min → 1 model
 Download(OpID string) (m *Model)
}

Two Groups of Web APIs (talk to me for beta access)

24

type ProPolyReduce interface {
 Upload(m *Model) (SessID string)
 Run(SessID string) (OpIDs []OpID) // 1m #poly ≈ 2 min → 4 models
 Eval(OpIDs []OpID, Scores []int)
 Download(OpID string) (m *Model)
}

Available, but untested

ConcurrentMS

Changkun Ou · Simplicity is Complicated · 2019.10

Automation, Speed, Quality Tradeoff

25

AutomaticManual

High Comp.
Complexity

Low Comp.
Complexity

Impractical

Obvious Stupid
Algorithmic Research

Changkun Ou · Simplicity is Complicated · 2019.10

Automation, Speed, Quality Tradeoff

26

AutomaticManual

High Comp.
Complexity

Low Comp.
Complexity

Impractical

Current
Practice

Obvious Stupid
Algorithmic Research

Changkun Ou · Simplicity is Complicated · 2019.10

Automation, Speed, Quality Tradeoff

27

AutomaticManual

High Comp.
Complexity

Low Comp.
Complexity

Impractical

Current
Practice

Obvious Stupid
Algorithmic Research

Maybe Interesting

28

Bernhard Riemann (1826-1866)

Simplicity is Complicated:
On the Balance of Performance and Knobs

Changkun Ou
LMU Munich

IDC 2019 Autumn
Vienna, Austria
Oct. 9, 2019

"The performance improvement does not materialize
from the air, it comes with code complexity increase."

29

Why MS is a well-studied problem to you?
Or, why it isn't?

When did you start thinking about using MS?
What are your expectations from MS? Why?
How did you evaluate MS outcomes in your 3D projects?

What are principles qualifying 3D Artists v.s. Non-3D Artists?
Is it quantitative measurable? Why?

When did industrial MS fail to your case? Why?

What is your maximum tolerance of X to MS? Why?
where X = speed, features preservation, and …

How could human solve retopology so incredible?
What did we miss in MS?

Any thing in mind?
AutomaticManual

High Comp.
Complexity

Low Comp.
Complexity

ImpracticalHorrible Cost

Obvious Stupid

Maybe Interestin
g

Previous Research

Random

