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Mesh simplification (MS) 
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Mesh simplification (MS) 

MS is largely applied 
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Mesh simplification (MS) 

MS is largely applied 

MS has been "solved" 20 years ago [Hoppe'96] [Garland'97]
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Blender

Autodesk Maya 
MeshLab
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2-Manifold locally resembles 2D Euclidean space.

Issues:

1. Non-scalable (serialized process)
2. NP-hard computation
3. ...

Naïve MS

// Polyreduce reduces number of polygons
// while preserving local topologies.
func Polyreduce(m *Mesh, c *Criteria) {

for !m.Eval(c) {
local := m.Pick()
local.Simplify()

}

}
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What really matters? Practitioner's Perspective
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1. Reduction speed      → Computation complexity
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1. Reduction speed      → Computation complexity

2. Expert preference    → Reduction quality

3. Manual intervention → Automation level

🙂             🙂             🙂
Can you tell the difference?
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1. Reduction speed      → Computation complexity

2. Expert preference    → Reduction quality

3. Manual intervention → Automation level

😡             🙂             😡
Can you tell the difference?
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The Ultimate MS Program
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Run!

_____________Target #Poly:

The Ultimate MS Program
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The Ultimate MS Program
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Run!

_____________Target #Poly:

The Ultimate MS Program

1. Reduction speed      → Computation complexity

     Solution: Thread multiplexing 🔥🔥🔥

2. Expert preference    → Reduction quality
3. Manual intervention → Automation level

        Solution: Hyperparameter reduction & Imitation learning 😎😎😎

Impractical



Computation Complexity:
From Parallelism to Concurrency
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Concurrent MS
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// Polyreduce reduces number of polygons
// while preserving local topologies.
func Polyreduce(m *Mesh, c *Criteria) {

for !m.Eval(c) {
local := m.Pick()
local.Simplify()

}

}

// SGD implements mini-batch 
// stochastic gradient descent. 
func SGD(m *Model, d *Dataset) {

for !m.Converge() {
miniB:= d.Batch()
m.GradientDescent(miniB)

}

}

Inspiration
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Concurrent MS

func Polyreduce(m *Mesh, c *Criteria) {

// SPEEDUP1: build workQ concurrently
for local := m.Pick(); local != nil; { 

sched.Submit(func() {
quality, ok := local.Eval(c)
if ok {

workQ.Push(quality, local)
}

})
local = m.Pick()

}
sched.Wait()    // sync barrier

// SPEEDUP2: run workQ concurrently
for w := workQ.Pop(); w != nil; { 

sched.Submit(w.Simplify)
w = workQ.Pop()

}
sched.Wait()    // sync barrier

}

var sched Sched // M:N work-steal scheduling
func (s *Sched) Submit(f func()) { … }
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// Polyreduce reduces number of polygons
// while preserving local topologies.
func Polyreduce(m *Mesh, c *Criteria) {

for !m.Eval(c) {
local := m.Pick()
local.Simplify()

}

}

// SGD implements mini-batch 
// stochastic gradient descent. 
func SGD(m *Model, d *Dataset) {

for !m.Converge() {
miniB:= d.Batch()
m.GradientDescent(miniB)

}

}

Inspiration
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Thread Multiplexing: Work-steal scheduling
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We are not even close
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640k#poly

29k#poly

119k#poly

126k#poly

Handcraft
  40 hours+

My approach
 ~30s

[Hoppe96]+[Garland97]
in Blender and many other 3D softwares

~6min

Ground truth
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640k#poly

29k#poly

119k#poly

126k#poly

Handcraft
  40 hours+

My approach
 ~30s

[Hoppe96]+[Garland97]
in Blender and many other 3D softwares

~6min

Ground truth

"MS is a solved problem!"



Quality & Automation:
From Fully Automatic to Semi Automatic
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No Free Lunch [Wolpert'96, Wolpert and Macready'97]
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Modeling Human Cost in MS
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T = [ MS + DT(p) ] * A(p)  

If p1 > p2 :

T1 - T2 = MS * [ A(p1) - A(p2) ] + [ DT(p1) * A(p1) - DT(p2) * A(p2) ] 
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T = [ MS + DT(p) ] * A(p)  

If p1 > p2 :

T1 - T2 = MS * [ A(p1) - A(p2) ] + [ DT(p1) * A(p1) - DT(p2) * A(p2) ] 

        > MS * [ A(p1) - A(p2) ] + [ DT(p2) * A(p1) - DT(p2) * A(p2) ]
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Modeling Human Cost in MS
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T = [ MS + DT(p) ] * A(p)  

If p1 > p2 :

T1 - T2 = MS * [ A(p1) - A(p2) ] + [ DT(p1) * A(p1) - DT(p2) * A(p2) ] 

        > MS * [ A(p1) - A(p2) ] + [ DT(p2) * A(p1) - DT(p2) * A(p2) ]

        = [ MS + DT(p2) ] * [ A(p1) - A(p2) ]

                            ⇒ Reduce attempts

Hick's Law
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type PolyReduce interface {
    Upload(m *Model) (OpID string)
    Upload(OpID string, c *Config)
    Run(OpID string)                  // 1m #poly ≈ 1 min → 1 model
    Download(OpID string) (m *Model)
}

Two Groups of Web APIs (talk to me for beta access)
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type ProPolyReduce interface {
    Upload(m *Model) (SessID string)
    Run(SessID string) (OpIDs []OpID) // 1m #poly ≈ 2 min → 4 models
    Eval(OpIDs []OpID, Scores []int)
    Download(OpID string) (m *Model)
}

Available, but untested

ConcurrentMS
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Automation, Speed, Quality Tradeoff
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AutomaticManual

High Comp.
Complexity

Low Comp.
Complexity

Impractical

Obvious Stupid
Algorithmic Research
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Automation, Speed, Quality Tradeoff
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AutomaticManual

High Comp.
Complexity

Low Comp.
Complexity

Impractical

Current
Practice

Obvious Stupid
Algorithmic Research

Maybe Interesting
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Bernhard Riemann (1826-1866)
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"The performance improvement does not materialize 
from the air, it comes with code complexity increase."
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Why MS is a well-studied problem to you? 
Or, why it isn't?

When did you start thinking about using MS? 
What are your expectations from MS? Why?
How did you evaluate MS outcomes in your 3D projects?

What are principles qualifying 3D Artists v.s. Non-3D Artists?
Is it quantitative measurable? Why?

When did industrial MS fail to your case? Why?

What is your maximum tolerance of X to MS? Why?
where X = speed, features preservation, and … 

How could human solve retopology so incredible?
What did we miss in MS?

Any thing in mind?
AutomaticManual

High Comp.
Complexity

Low Comp.
Complexity

ImpracticalHorrible Cost

Obvious Stupid

Maybe Interestin
g

Previous Research

Random


