

LUDWIG-MAXIMILIANS-UNIVERSITÄT

The Human in the Infinite Loop A Case Study on Revealing and Explaining Human-Al Interaction Loop Failures

Changkun Ou, Daniel Buschek, Sven Mayer, Andreas Butz

Mensch und Computer 2022 SE04: Artificial Intelligence

September 6, 2022 Darmstadt, Germany

Mesh Space

How to get the best outcome using this interface?

Bring A Human into the Loop

How to get the best outcome using this interface?

Bring A Human into the Loop

"I have no idea, but let's do some exploration and accumulate few experiences"

Bayesian Optimization

$p^* = \operatorname{argmax}_{p \in \mathcal{P}} h(M(p))$

Bayesian Optimization

[Marks et al. 1997]

[Brochu et al. 2007]

.

$p^* = \operatorname{argmax}_{p \in \mathcal{P}} h(M(p))$

	Vortex Rings Max. n Genera
	Curl Noise
	Lay
etter O Best Found it!	Lay
	Lay Lay
\$	Scene param
er Rest Found it!	New Agin

Max. number of rings:	3		3
Generation frequency:	0	-	3
Upward velocity:	0.1	-	2
Radius:	0.1	-	2
Magnitude:	0	2	10
url Noise			
Layer 1 scale:	0.9	-	0.9
Layer 1 magnitude:	0.25		0.25
Layer 2 scale:	2		2
Layer 2 magnitude:	0.2		0.2
Layer 3 scale:	1		1
Layer 3 magnitude:	0		0
Layer 4 scale:	1		1
Layer 4 magnitude:	0		0
cene parameters			
		Length:	10
Marker spawn rate:		100	
Ma	arker spawr	radius:	1

[Koyama et al. 2020]

Experiments

- Field study
 - 3 months of usage by 2 technical artists
- Lab study •
 - 20 participants, each per 90 minutes

Rating Process: The Intuition

• If the AI (i.e., Bayesian optimizer) successfully optimized the outcome, the overall ratings should towards more to the "right" (Higher ratings).

Rating Process: Observations

- Large amount of mismatch between expected and actual ratings

• Either stationary or non-stationary decreasing (Augmented Dickey-Fuller & Mann-Kendall)

Did the Optimization Work?

- Partially.
 - Objectively higher reduced models were rated higher (Mann-Whitney U)
 - Subjective satisfaction:
 - Field 11.9%, Lab 48.5%

Field Study

- Heuristic bias
 - "This is similar to ..." (But actually quite different)

- Heuristic bias
 - "This is similar to ..." (But actually quite different)
- Loss aversion
 - "I've seen better results before, but the results are getting worse and worse"

- Heuristic bias
 - "This is similar to ..." (But actually quite different)
- Loss aversion
 - "I've seen better results before, but the results are getting worse and worse"
- Diminishing returns
 - "I can't see any differences"

Pitfalls: Machine Side

Al algorithms often assume:

Pitfalls: Machine Side

Al algorithms often assume:

- Stable (latent) preference assumption
 - "I've changed my mind"
 - "X is better in A, B, C but Y is better in D, E, F"

Pitfalls: Machine Side

Al algorithms often assume:

- Stable (latent) preference assumption
 - "I've changed my mind"
 - "X is better in A, B, C but Y is better in D, E, F"
- Complete preference assumption
 - "I don't know"

Reflections

- A human-Al interaction loop may be successful if humans can provide feedback that respects the underlying algorithm assumptions
- In the worst case, a human may never be satisfied with the results and be kept in an *infinite optimization loop*
- Thankfully, there are potential countermeasures that could be evaluated in the future

• Software SDKs, datasets, scripts, etc. are open sourced: https://changkun.de/s/infloop

Inspection Α **Feedback Satisfied?** No

LUDWIG-MAXIMILIANS-UNIVERSITÄT

The Human in the Infinite Loop A Case Study on Revealing and Explaining Human-Al Interaction Loop Failures

Changkun Ou, Daniel Buschek, Sven Mayer, and Andreas Butz

Mensch und Computer 2022 SE04: Artificial Intelligence

September 6, 2022 Darmstadt, Germany

