The Human in the *Infinite Loop*

A Case Study on Revealing and Explaining Human-AI Interaction Loop Failures

Changkun Ou, Daniel Buschek, Sven Mayer, Andreas Butz

Mensch und Computer 2022
SE04: Artificial Intelligence

_Sepember 6, 2022*
Darmstadt, Germany
Mesh Space

High Rendering Cost

Poor Visual Quality

Perfect Visual Quality
Mesh Space

- Poor Visual Quality
- Perfect Visual Quality
- Trade-off
- High Rendering Cost
How to get the best outcome using this interface?
Bring A Human into the Loop

How to get the best outcome using this interface?
Bring A Human into the Loop

“I have no idea, but let’s do some exploration and accumulate few experiences”
Bayesian Optimization

\[p^* = \arg \max_{p \in \mathcal{P}} h(M(p)) \]
Bayesian Optimization

\[p^* = \arg\max_{p \in \mathcal{P}} h(M(p)) \]
Bring A Human into the Loop

Ask for Feedback

Dispatches

Mesh Space

Rates

Rates
Bring A Human into the Loop

Ask for Feedback

Dispatches

Rates

Mesh Space
Bring A Human into the Loop
Bring A Human into the Loop

Ask for Feedback

Dispatches

Rates
Bring A Human into the Loop

Ask for Feedback

Rates

Mesh Space

Dispatches
Bring A Human into the Loop

Ask for Feedback

Mesh Space

Bayesian Optimization

Dispatches

Rates
Bring A Human into the Loop

Mesh Space

Dispatches

Inference

Bayesian Optimization

Ask for Feedback

Rates
Experiments

- Field study
 - 3 months of usage by 2 technical artists
- Lab study
 - 20 participants, each per 90 minutes
Rating Process: The Intuition

• If the AI (i.e., Bayesian optimizer) successfully optimized the outcome, the overall ratings should towards more to the “right” (Higher ratings).
Rating Process: Observations

- Large amount of mismatch between expected and actual ratings
- Either stationary or non-stationary decreasing (Augmented Dickey-Fuller & Mann-Kendall)
Did the Optimization Work?

- Partially.
 - Objectively higher reduced models were rated higher (Mann-Whitney U)
 - Subjective satisfaction:
 - Field 11.9%, Lab 48.5%
Pitfalls: Human Side
Pitfalls: Human Side

• Heuristic bias
 • “This is similar to …” (But actually quite different)
Pitfalls: Human Side

• Heuristic bias
 • “This is similar to …” (But actually quite different)

• Loss aversion
 • “I’ve seen better results before, but the results are getting worse and worse”
Pitfalls: Human Side

- Heuristic bias
 - “This is similar to …” (But actually quite different)

- Loss aversion
 - “I’ve seen better results before, but the results are getting worse and worse”

- Diminishing returns
 - “I can’t see any differences”
Pitfalls: Machine Side

AI algorithms often assume:
Pitfalls: Machine Side

AI algorithms often assume:

• Stable (latent) preference assumption
 • “I’ve changed my mind”
 • “X is better in A, B, C but Y is better in D, E, F”
Pitfalls: Machine Side

AI algorithms often assume:

- Stable (latent) preference assumption
 - “I’ve changed my mind”
 - “X is better in A, B, C but Y is better in D, E, F”
- Complete preference assumption
 - “I don’t know”
Reflections

- A human-AI interaction loop may be successful if humans can provide feedback that respects the underlying algorithm assumptions.
- In the worst case, a human may never be satisfied with the results and be kept in an infinite optimization loop.
- Thankfully, there are potential countermeasures that could be evaluated in the future.
- Software SDKs, datasets, scripts, etc. are open sourced:

 https://changkun.de/s/infloop
The Human in the *Infinite Loop*

A Case Study on Revealing and Explaining Human-AI Interaction Loop Failures

Changkun Ou, Daniel Buschek, Sven Mayer, and Andreas Butz

Mensch und Computer 2022

SE04: Artificial Intelligence

September 6, 2022

Darmstadt, Germany