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“This paper explains why deep learning can generalize well”

Generalization in Deep Learning

Kenji Kawaguchi Leslie Pack Kaelbling Yoshua Bengio
Massachusetts Institute of Technology University of Montreal, CIFAR Fellow
-
—
o Abstract ability to the use of small-capacity model classes
@\ (Mohri et al., 2012). From the viewpoint of com-
it This paper explains why deep learning can pact representation related to small capacity, it
3 generalize well, despite large capacity and has been shown that deep model classes have an
O possible algorithmic instability, nonrobust- exponential advantage to represent certain natural
O Tiess, ai D Liiiiia, elnecuively Teoo- target functions when compared to shallow model
— ing an open problem in the literature. Based classes (Pascanu et al., 2014; Montufar et al., 2014;
1paldneicht +thie nanar alea nra Tivmi et al 2N14- Talgaralvy 2NTA: Pacain at al  2N17Y
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1 Motivation

Outline

1 Motivation

e Backgrounds Introduction

e Recap of Traditional Generalization Theory
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(RYIEeIsgl Backgrounds Introduction

What is Generalization?

Definition: Generalization Bound

Given an sample dataset S, = {(z1,v1), - , (®m,ym)} generated by i.i.d from an unknown
distribution D, let ¢ be a loss function. Suppose we have a hypothesis h learned from model by
optimization algorithm A and the dataset, the expected risk R[h4(s,,)] = E(z,y)~pl€(h(),y)] and
empirical risk &,,,[h4(s,.)] = = > " (h(z;),y:) - The generalization bound defined as follows:

m
I=1

Ghyes,, = R[h] — Rm[h]

.
Informal:
e hypothesis: a function you learned
e hypothesis set (class) = all possible functions you can learn
e generalization: “knowledge”
e generalization bound = test error - training error
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Goals of Generalization Theory

“There is nothing more practical than a good theory”

e Role 1: Expected risk guarantee (estimating test error)
e Role 2: Generalization bound (generalization quality, determine good models)
e Role 3: Practical guidance (archive optimal rapidly)

Informal: Generalization theory is all about: - =
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(RYIEeIsgl Backgrounds Introduction

The Force of Generalization

e Traditional wisdom (theories)
O Occam’s Razor & No Free Lunch Theorem;
o  Algorithmic stability & robustness;
o Flat region generalize better (unproved).
e Paper [Zhang et al. 2017] (empirical)
o Deep models generalize via memorization
o  Explicit regularization (weights norm, L2) is unnecessary
0 Optimization algorithms (SGD) can implicit regularize
e “Paradox”: why deep learning sometimes generalize well despite its large capacity, instability,
non-robustness, and sharp minima?

This paper:

e Decomposition of generalization theory
e Understanding generalization failures
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Recap I: Model Complexity

Images souce [ Mohri et al. 2012 ]

Traditional theory uses VC dimension measures model complexity; PY
However, VC dimension is data independent; O ® O
And Rademacher complexity is data dependent;

VC(deep nets) = O(#weights*log(#weights)); ®
Rademacher complexity measures ability of fitting random Iabeg P
® o
erro": test error Memorization Generalization

A —1
Rademacher bound: R[h] < Rm[h] —|—2§R('H) 4 Inéd

complexity term 2m

A VC(H Iné—1
- VC bound: R|[h] ng[h]qL\/LjL\/
training error . m m,
TalielgnsFIHITest errorff g Traning errorgdComplexity Penalt
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Recap llI: Algorithmic Stability & Robustness

e Algorithmic stability consider how one data point perturbation
influence hypothesis function;

e Algorithmic robustness consider how sensitive apply same algorithm
to partitions of a dataset.

Stability

Informal: < sdAlgorithm Penalt

Image Source [Google Inc., 2015]
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(RYEIsl Recap of Generalization Theory

Recap Ill: Flat Region Conjecture

e (empirical observation says) Objective function optimization in

high dimentional space:

o  #Saddle points tend to exponetially large than #minima;

o  Conjecture: Flat region tend to generalize well.

(a) without skip connections

Loss landscape, Image source [Li et al. 2018]

(b) with skip connections

Understanding Generalization

50

20

Image source [Dauphin et al. 2015]
>

“Flat region” “Sharp region”

ImageNet-1k

——— ResNet-50
ResNet-101
ResNet-152

10 20 30 40 50 60 70 80 90
epochs

Image source [He et al. 2015]

February 1, 2018 9



Outline

2 Rethinking of Generalization

e Understanding generalization failure

e Emperical risk guarantee
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2 Rethinking of Generalization

On the origin of “paradox”

In Model Compexity theory (same in other theories):
e p: model complexity is appropriate small
® g: generalization gap is small

e Model Complexity theory says: p =>¢q
o Namely, generalization gap becomes small if model complexity is appropriate small.
® [Zhanget al 2017] says: We observed g, then we should have p. (g => p)
o  Namely, generalization gap becomes small then model complexity is appropriate small.

o
In short: [Zhang et al. 2017] concluded nonsense. Beep-moedelsgeneratize-via-memerization-
Traditional theories doesn’t applied to Deep Learning directly.
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PRGN RENEIEl 2ol Empirical Risk Guarantee

Empirical Risk Guarantee ( )

e The paper first proved the following bound, regarding deep learning practice:

Theorem: empirical risk estimation (for finite hypothesis class)

R[f] S Rval[f] +

20I(Be) | \/ 272 In( Faetl)

3Myal Myal

where
e Cand gamma depends on the quality of model, both equal to 1 in the wosest case;
e m_valisthe number of validation set samples;
e |F val| isthe number of hypothesis when using validation set

In short: keep seeking validation model class guarantee “good” test error;
Test error independent with what algorithm you use, and how loss landscape looks like.
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PRGN RENEIEl 2ol Empirical Risk Guarantee

Empirical Risk Guarantee Ill: An Example

Theorem: empirical risk estimation (for finite hypothesis class)

R[f]SRval[f]+2Cln( . )+\/2721n( ]

3mval

® Let myq = 10,000 (MNIST or CIFAR-10) and § = 0.1 (90% confidence);

® Inaworse case, C=1 and v* = 1, and hypothesis class | Fyaz| = 1,000, 000, 000;
 R[f] < Roau[f] +6.94% |

N P
1000 Q00000 1000000 000
2l°g[Tj || 2102[T}

.
310000 \ 10000

In short: MNIST & CIFAR-10 always get good results because of small

hypothesis class on validation set.
0.069396461...
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Outline

3 Bounds of Generalization Gap

e Data-dependent Bound

e Data-independent Bound
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CR=Tolilale LN NEERETE VLI NEETM Data-dependent Bound

“Good” Dataset

e The paper proves generalization bound in deep networks strongly depends on the quality
of dataset;
e Thus, it provides a definition to determine what is a “good” dataset for a model:

Definition: Concentrated dataset

maw( zzT]——Zzz )</31,I| Zyzsz —E[y;,2" ]|l < B2, Ely"y]— ;Zy?yiéﬁs
=1 ]

where
e z=some_function(model, x), X is input;
e yisthe label of the dataset.

In short, (B1, B2, B3) are constants, all depends on (model, dataset);
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CR=Tolilale LN NEERETE VLI NEETM Data-dependent Bound

Data-dependent Bound ( )

e \With a concentrated dataset, we have the following bound:

Theorem: Data-dependent Bound

dy dy
R[facs,m)] — Bmlfas)] < B llwas,)klls +282 ) llwacs,)kll + Bs
k=1 k=1

where
® Wasm) is the weights learned by algorithm A over dataset Sm

In short:
e test error - training error = constant_of(model, dataset);
e No relationship with algorithm (stability and robustness) and loss (flat or sharp);
e With this formula, you can determine dataset quality and estimate your test error.
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KR=Toli sl CXOHEERETE vl NEETM Data-independent Bound

Two-phase Training Technique

“Standard” Phase

e By study the properties of SGD, the Train the network

author propose two-phase training;  jn standard way
with am samples

o L02 of the dataset;
)
g 1
> 0.98 P aa
< &
5 0.96
S 094/ +M§g¥ (ND)
e “Freeze” Ph
g 092 o CIFARLO eeze ase
=09 Freeze activation
0 0.2 0.4 0.6 0.8
a pattern and keep

* ratio = two-phase/base training with the

) ) rest of (1-a)m
e Experiments: Small alpha archives samples

compatitive performance.
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KR=Toli sl CXOHEERETE vl NEETM Data-independent Bound

Data-independent Bound ( )

e With two-phase training, weights also can be bounded, author proved:

Theorem: Data-independent bound

2d;C;Cy  [Ing—?
—— +
P/ Mo 2Mmy

R[f] £ B, olf] +

where
e C rhoandC_w are some bounded constants from z and w;
® p, m_sigma, delta are hyperparameters;

In short:
e test error - training error = constant_of(model);
e With this formula, you can determine what is a good model architecture.
e The bound is independent with #params
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KR=Toli sl CXOHEERETE vl NEETM Data-independent Bound

Data-independent Bound: Examples

Theorem: Data-independent bound

2d;C,Cy L o
P/ Mo 2Mmy
e Consider CIFAR-10, m=50000, d_y =10, a worse case: rho=1, C_sigma=C_w =0.5.

e With two-phase training, alpha = 0.1 (90% samples for freeze phase) and 90% confidence:
o R[f] = \hat{R}[f] + 24%

R[f] £ B, olf] +

GRS 'W 21000101 log( )
150000 0.1, "\ 2(50000(1-0.1) 1450000 (1-0.1) \ 2(50000(1-0.1p
® An optimal case, C_sigma=C_w=0.1
o R[f] =\hat{R}[f] + 1.4% !!!
0.240760. . 0.0144862. .
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4 DARC Regularizer

e Directly Approximately Regularizing Complexity

e DARC1 Experiments
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ARV OGRS CIEL Il Directly Approximately Regularizing Complexity

Directly Approximately Regularizing Complexity (DARC) Family

Data-independent bound derive from Radmacher complexity over mini-batch. Thus the
following formula describe DARC family:

sup > fih](cH+1)(a7i)]

\

loss = original loss + —Eg, ¢
m

i=1

The simplest version:

DARC1 Regularization

A (H+1)
loss = 11 — hy i
oss = original loss + — max ; | ()|

In short, it’s a implicit regularizer with explicit expression in loss function.
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ZADVANORCINEv-ll DARC1 Experiments

Experiment results: DARC1 Regularizer on MNIST & CIFAR-10

DARC1 implementation (Keras)

def
)\ m def
(H+1)
TmaXE :|hk ()] .
m k : * = axis
1=1 return r
return
A
Promising results (Base line is the state-of-the-art error):
MNIST (ND) MNIST CIFAR-10
Test error
ratio mean stdv mean stdv mean stdv
DARC1/Base 0.89 | 0.61 095 | 0.67 0.97 0.79
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TL;DR: Only Model Architecture & Dataset Matter

Traditional theories fail to explain generalization for over-parameterized models;
Deep Networks can generalize well:

because of large hypothesis capacity (but why SGD family find quickly?);
because of small validation hypothesis class search;

independent with #params;

In a specific task, test error depends on dataset quality and model architecture;

In general, test error only depends on model architecture.
DARC regularization family:

e Implicit regularizer to help you improve generalization.

This paper is all about: < td(Model, Data) Penalt
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Outline

5 Related Readings
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What’s the difference
between .....??7
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(RYIEeIsgl Backgrounds Introduction

General Concpet Questions

e What'’s the difference between “function” and “hypothesis”?
o Function is a general concept represent a mathematical mapping, and a hypothesis is a
function you learned by using machine learning model.
e What’s the difference between “cost”, “loss” and “objective” function?
o Aloss function is part of cost function, which is an objective function.
e What'’s the difference between “risk”, “loss”, “accuracy” and “error”?
o “accuracy” and “error” are different form of risk, which is the expectation of loss.
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Why traditional theory
also failure?
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2 Rethinking of Generalization

Properties of (over-parameterized) linear models

Theorem: Generalization failure on linear models

Consider a linear model with the training output matrix ¥ = Xw where X
is a fixed input feature. Let Yiest = Xiestw where Xieq: is a fixed input feature
of Xiese. Let M = [XT, XE_,]T and w* be the ground truth parameters. Then,

e For any target Y € R™*% there exist parameters w such that Y = Y, if
n > m, rank(X) > m and rank(M) <n

e For any ¢,0 > 0, there exist parameters w and pairs of training dataset
(®,Y) and test dataset (Piest, Yiess) Such that
— Y =Y + €A for some matrix A with ||4]]y <1
— Yiest = Yiest + €B for some matrix B with ||Blle <1
— ||lw||2 > § and ||w — w*||]2 > §
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2 Rethinking of Generalization

On the origin of “paradox”

Given an unknown distribution (z,y) ~ D and sample dataset S,,, suppose
3f* € F,e > 0 such that R[f*] — Rmn[f*] < €. Then,

1. For any model class F' whose model complexity is large enough to memo-
rize any dataset and which includes f* possibly at an arbitrarily sharp minimum,
there exits (A, Sy,) such that the generalization gap is at most €;

2. For any dataset S, there exist arbitrarily unstable and arbitrarily non-
robust algorithms A such that the generalization gap of f4(g,,) is at most e.
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How can | evalute my
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CR=Tolilale LN NEERETE VLI NEETM Data-dependent Bound

Path TriCk in ReLU Net [ Choromanska et al. 2015 ]

1 if path activate
g =
0 otherwise

(H+1)
hk = Z LpathOpath H Wpath,k

path path

= [z o o]" wy, = zwy,

Input vector: x Layer (H) Layer (H+1)
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CR=Tolilale LN NEERETE VLI NEETM Data-dependent Bound

Concentrated Dataset

RIfas,) = Bonlfags] = EC@A@) T, 9) = = S t(h(@) "+, y)

=1

d
Yy 1 m
= [’wiwm),k (E[ZZT] - Zziz;!> ’wA(sm),k]

k=1 =1

dy

Z [( Zymz Ely,z ]) wacs,) x| +Ely Tyl - Zyz Y,
k=1

Definition 3: “good” dataset

(B1, B2, B3)-concentrated dataset:

1 m
Amaz (E[zzT] -— Zziz;-f) < B, ||— Zyzsz —Efy;2" ]l < Bo, Ely"y]—— Zyz Y, < fs
=1 1=1 1=1

y
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CR=Tolilale LN NEERETE VLI NEETM Data-dependent Bound

Data-dependent Guarantee

RIfas] = Rl facs,] = EE(@) ) = =S b(h(a)# 0, y)
=1

d
Yy 1 m
= [’wiwm),k (E[zzT] - Zziz;!> w.A(Sm),k]

k=1 =1
d
Yy 1 m
+2 [(E > yazl —Ely,z ]) was, k| +EY Y] — Zyz Yi
k=1 =1
d, d,
R[faesm)) = Bmlfasm)] < B1 D llwacs,)klld + 262> llwacs,)kll + Bs
k=1 k=1
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PRGN RENEIEl 2ol Empirical Risk Guarantee

Why z?

Bernstein Inequality

Independent zero-mean random variables 21, 22, . . ., 2m, E[2?2] < 72, |2]| < C.
Bernstein inequality:
e2m,/2
v2 +€eC/3

1 m
P EZzi>e < exp—

=l

e Also have matrix form: [Tropp, 2012, Theorem 1.4]
e Basically, all generalization bound infer from concentration inequalities, thingking about
how to construct a random variable.

Ou Changkun (LMU, hi@changkun.us) Understanding Generalization February 1, 2018 42



What's the SGD property
supports two-phase
training?
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KR=Toli sl CXOHEERETE vl NEETM Data-independent Bound

SGD, z, w; relations?
Did you forget that sigma depends on w?

No, they could be independent.

H+1 T
hl(c ) — Z LpathOpath H Wpath,k = [:1: o 0'] Wi = ZWg
path path
Consider Taylor approximation:
of(w*
U W)|w=w = b(w™) + ( )(w —w*) + o(w — w*)
ow
Then, Consider chain rule and h = [z o o]” w = zw:
. L [0w)]" T T
L(w* +€) =L(w*) + 5w €+ o(e) dh =d([xoo] )w+ [xoo] dw=wdz+ zdw
w
Observation of gredient direction e : The derivative of z
ol(w*) z=xoo
€= —
ow become a constant with respect to w, i.e.
dh = zdw
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3 Bounds of Generalization Gap

Two-phase training

Data-independent Bound

Standard Phase

H+1
p{HY
Train the network in th +1)
standard way with
partial dataset;
(H+1)
h d,
Freeze Phase pH+1)
1
Freeze activation (H+1)
pattern and keep hs
training with the rest
of dataset.
(H+1)
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Why DARC helps implicit
regularization?
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Directly Approximately Regularizing Complexity
Directly Approximately Regularizing Complexity (DARC)

Bound by Rademacher Complexity [Koltchinskii and Panchenko 2002]

Given a fixed p, with high probability (1 — §):

R[fl< R Qd:'z’?R' F
[f] < m,p[f]+p—m m(F) +A) 5=

The approx. of Rademacher complx. converge to approx. of expect. over Sm. Thus:

sup 2"”: fz‘héHH)(wz‘)]

k=1

A

loss = original loss + TESm,g
m
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DARC1 on large
dataset?
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EEl GO [SRSIIG M Experiments

Experiment results: DARC1 Regularizer with ResNet-50 on ILSVRC2012

e DARCI1 Regularizer compare to baseline (ImageNet without DARC1 regularizer);
o Each line shows the average over 5 runs;
o 10% training set held out as validation set;
o Solid line uses DARC1 and dotted line is baseline.

100%

90%

80%

70%

60%

Accuracy
w
(=3
X

0%

Training with DARC1

w==Top-1(Train) =====Top-5 (Train)
Top-1 (Val) Top-5 (Val)

Accuracy

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epoch

10 Image classes
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100%

Training with DARC1

Jp—

w=Top-1 (Train) ====Top-5 (Train)

Top-1 (Val) Top-5 (Val)
s 4 s 6 7 8 9 10
Epoch
Entirely
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Why SGD family?
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5 Conclusions

Personal Opinions regarding SGD

e Deep networks only learned distribution of training data thanks to large nonlinearity activations,
fortunately test data has same distribution;

e Generalization gap independent with traditional theory;

e However, global minima doens’t mean best generalization;

e | think “flat minima hypothesis can generalize well” is true (sharp minima as well);

e SGD has the property to bypass saddle points (instead of stuck), therefore it can keep seek on flat

surface;

We need more investigation.
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