
❏

❏

❏

❏

❏

Seminar Deep Learning WiSe 2017/18
Institut für Informatik
Universtät München 1

Agenda

○
○

○
○
○

○
○

○
○

○
○

2

#1 Introduction & Convolutional Layers

3

● CNN Overview

● CNN Structure

● Example

● Hyperparameters

4

CNN Overview

● Inspired by the visual cortex

● Is often used for image and video recognition

● Detects features in a image

● Classification

5

Images and Neural Networks

An image is represented by pixels in X and Y dimension and
consists of several color channel (ex. RGB)

⇒

Recap: A neural network trains the weights to learn a good
classification of labeld data

For an (RGB) image of 10x10 pixels we need 300 inputs. Each
representing a pixel in the image

Disadvantages:
- super linear growth of weights
- locality is not mentioned

A filters is a square matrix. It is used to detect

features in the original image. Therefore the filter

slides over the image and outputs a value that says

whether a feature was detected or not.

For every feature an own filter is applied.

We want this filters to be learned from a model.

Feature Detection in Images

7

CNN Structure

Convolutional Layer - Example

3 2 2 5 5 3

3 1 1 2 6 2

1 4 3 3 1 4

2 2 3 7 0 1

6 0 4 0 3 4

2 1 3 4 4 0

2

1 0 -2

1 1 0

0 -1 1

Input

Filter

Output3 * 1 = 3
2 * 0 = 0
2 * (-2) = -4
3 * 1 = 3
1 * 1 = 1
1 * 0 = 0
1 * 0 = 0
4 * (-1) = -4
3 * 1 = 3

Sum is ‘2’

Convolutional Layer - Example

3 2 2 5 5 3

3 1 1 2 6 2

1 4 3 3 1 4

2 2 3 7 0 1

6 0 4 0 3 4

2 1 3 4 4 0

2 -6

1 0 -2

1 1 0

0 -1 1

Input

Filter

Output2 * 1 = 2
2 * 0 = 0
5 * (-2) = -10
1 * 1 = 1
1 * 1 = 1
2 * 0 = 0
4 * 0 = 0
3 * (-1) = -3
3 * 1 = 3

Sum is ‘-6’

Convolutional Layer - Example

3 2 2 5 5 3

3 1 1 2 6 2

1 4 3 3 1 4

2 2 3 7 0 1

6 0 4 0 3 4

2 1 3 4 4 0

2 -6 -7

1 0 -2

1 1 0

0 -1 1

Input

Filter

Output2 * 1 = 2
5 * 0 = 0
5 * (-2) = -10
1 * 1 = 1
2 * 1 = 2
6 * 0 = 0
3 * 0 = 0
3 * (-1) = -3
1 * 1 = 1

Sum is ‘-7’

Convolutional Layer - Example

3 2 2 5 5 3

3 1 1 2 6 2

1 4 3 3 1 4

2 2 3 7 0 1

6 0 4 0 3 4

2 1 3 4 4 0

2 -6 -7 10

1 0 -2

1 1 0

0 -1 1

Input

Filter

Output5 * 1 = 5
5 * 0 = 0
3 * (-2) = -6
2 * 1 = 2
6 * 1 = 6
2 * 0 = 0
3 * 0 = 0
1 * (-1) = -1
4 * 1 = 4

Sum is ‘10’

Convolutional Layer - Example

3 2 2 5 5 3

3 1 1 2 6 2

1 4 3 3 1 4

2 2 3 7 0 1

6 0 4 0 3 4

2 1 3 4 4 0

2 -6 -7 10

7

1 0 -2

1 1 0

0 -1 1

Input

Filter

Output3 * 1 = 3
1 * 0 = 0
1 * (-2) = -2
1 * 1 = 1
4 * 1 = 4
3 * 0 = 0
2 * 0 = 0
2 * (-1) = -2
3 * 1 = 3

Sum is ‘7’

Convolutional Layer - Example

3 2 2 5 5 3

3 1 1 2 6 2

1 4 3 3 1 4

2 2 3 7 0 1

6 0 4 0 3 4

2 1 3 4 4 0

2 -6 -7 10

7 8 -12 3

3 -1 14 3

4 -7 7 4

1 0 -2

1 1 0

0 -1 1

Input

Filter

Output7 * 1 = 7
0 * 0 = 0
1 * (-2) = -2
0 * 1 = 0
3 * 1 = 3
4 * 0 = 0
4 * 0 = 0
4 * (-1) = -4
0 * 1 = 0

Sum is ‘4’

Convolutional Layer - Hyperparameters
filter:

● the dimensionality of the output space

kernel size:

● describes the size of the filters

stride:

● amount of steps (pixels) the filter moves

padding:

● adds values on the border of the input (image)

#2 Pooling layers & FC layers

● Pooling Layers
○ How do they work?
○ Why are they used?
○ Disadvantages

● Fully Connected Layer
○ FC Layer in CNN
○ Purpose of FC - Layers in CNN

● Invariance of a CNN
○ Shift invariance
○ Distortion invariance

Pooling Layers - How do they work?

● Filter dimension. Not necessary to be a square.
● Stride, which defines the movement of the filter.
● Pooling algorithm. Most common are the max pooling filter.

Specified by following properties:

Pooling Layers - How do they work?

2 4 1 0

5 2 3 1

2 3 1 1

2 0 7 8

Input: Output:

Max Pooling Filter with Size 2 x 2 and Stride 2.

Pooling Layers - How do they work?

2 4 1 0

5 2 3 1

2 3 1 1

2 0 7 8

Input:

5

Output:

Max Pooling Filter with Size 2 x 2 and Stride 2.

Pooling Layers - How do they work?

2 4 1 0

5 2 3 1

2 3 1 1

2 0 7 8

Input:

5 3

Output:

Max Pooling Filter with Size 2 x 2 and Stride 2.

Pooling Layers - How do they work?

2 4 1 0

5 2 3 1

2 3 1 1

2 0 7 8

Input:

5 3

3

Output:

Max Pooling Filter with Size 2 x 2 and Stride 2.

Pooling Layers - How do they work?

2 4 1 0

5 2 3 1

2 3 1 1

2 0 7 8

Input:

5 3

3 8

Output:

Max Pooling Filter with Size 2 x 2 and Stride 2.

Pooling Layers - Why are they used?

● Reduce the size of the image and therefore the number of parameters and
computational requirements.

● As countermeasure against overfitting.

Pooling Layers - Disadvantage and alternative

Limiting factor for the depth of the network.

But: Researches try to replace Pooling Layers by some Convolutional Layers
with bigger Stride.

Fully Connected Layers - FC Layers in CNN

Convolutional and pooling layers normally use multiple filters on the same input.
Therefore as output there are many channels, which are processed again by some
layers.

On the other side: FC - Layer works on single vectors.

Fully Connected Layers - FC Layers in CNN
How to connect the FC Layer to the previous Layers?

5 3

2 4

Channel 1

3 1

2 1

Channel n

5 3 2 4 3 1 2 1

Fully Connected Layers - Purpose of FC Layers in
CNN
Analyzes the extracted features and performs a classification of the input based
on those.

Outputs a vector with probabilities for each possible class and how likely the input
belongs to one of those.

0.1

0.8

0.2

0.1

Cat

Dog

Human

Mouse

Invariance in CNN - Shift invariance

Each filter is learned to detect a single feature.

Convolutional Layers moves each filter over the input.

Therefore the filter detects its learned feature independent of its position.

Invariance in CNN - Distortion invariance
By using a pooling layer the image stays almost the same.

But it removes the importance of exact positions/values for a NN.

0 0 0 0 0.75 1

0 0 0 0.75 1 0.75

0 0 0.75 1 0.75 0

0 0.75 1 0.75 0 0

0.75 1 0.75 0 0 0

1 0.75 0 0 0 0

0 0.75 1

0.75 1 0.75

1 0.75 0

References of this Section
CS231n Convolutional Neural Networks for Visual Recognition. Retrieved November 27, 2017, from
http://cs231n.github.io/convolutional-networks/#pool

LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks,
3361(10), 1995.

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806.

http://cs231n.github.io/convolutional-networks/#pool

#3 The ImageNet Competetion & Case Study

● ImageNet

● Classification Errors

● ILSVRC - Evolution

● ILSVRC - Winners

○ AlexNet

○ VGG

○ GoogLeNet

○ ResNet

30

ImageNet

●

●

●

●

●

●

{conveyance; transport}

{vehicle}

{motor vehicle; automotive vehicle}

{car; auto; automobile; machine; motorcar}

{cruiser; squad car; patrol car; police car} {cab; taxi; hack; taxicab}

31

Classification Errors

32
[ImangeNet Classification with Deep Convolutional Neural Networks]

ILSVRC - Evolution

[Adaptation of: Semih Yagcioglu. An Overview of Deep Residual Learning. 2016]

!

33

●

●

●

●

ILSVRC - AlexNet

34
[ImangeNet Classification with Deep Convolutional Neural Networks]

●

●

●

ILSVRC - VGG

35
[https://guillaumebrg.wordpress.com/2016/02/13/adopting-the-vgg-net-approach-more-layers-smaller-filters/]

ILSVRC - VGG

36[Very deep convolutional networks for large-scale image recognition]

[https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/googlenet.html]

ILSVRC - GoogLeNet

●

●

●

● ⇒

●

37

ILSVRC - GoogLeNet - Inception module

●

⇒

●

●

[Going deeper with convolutions]
38

ILSVRC - GoogLeNet - Inception module

● ⇒

●

●

[https://www.youtube.com/watch?v=VxhSouuSZDY]
39

“We need to go deeper”

[Image source: http://knowyourmeme.com/memes/we-need-to-go-deeper]
40

http://knowyourmeme.com/memes/we-need-to-go-deeper

Residual Network (ResNet) AlexNet

VGG

GoogLeNet

ResNet

● The problem is deeper models are harder to optimize

● Solution: Use network layers to fit a residual mapping instead of
directly trying to fit a desired underlying mapping

41

Residual Block

42

Linear

“short cut”

ReLU Linear ReLU

Layer 1 Layer 2

Why Residual Block?

43

“short cut”

Layer 1 Layer 2

Linear ReLU Linear ReLU

L2 regularization shrink weight

●

●

A Glance of ResNet Application: DenseNet

44
[Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2016). Densely connected convolutional networks. arXiv preprint arXiv:1608.06993.]

● Densely connect every two layer

Summary of ImageNet

45

● Architecture Evolution

○ AlexNet: Bring CNN to CV on board

○ VGG: “Keep deep, Keep simple”

○ GoogLeNet: Inception Module

○ ResNet: Residual Module

References of this Section
1.

46

http://www.image-net.org/about-overview
http://wordnet.princeton.edu/
http://image-net.org/about-stats
http://www.image-net.org/challenges/LSVRC/
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/googlenet.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/residual_net.html
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

#4 Practical Tricks

●

○

○

○

●

○

○

47

Problems about CNNs

48

Reasons to do not reinvent the wheel

● training time is too long
● need of

○ powerful GPUs
○ need of datasets of sufficent size

● takes a lot of human resources

49

Transfer learning

● Idea:
○ Feature extraction
○ Use the architecture
○ Train some layers while

freeze others
● How to:

1. Decide what you want to learn
2. Find an appropriate pre-trained model
3. Fine-tuning

50

Finding the appropriate pre-trained model

● depends on

○ the task

○ input size

● similar task => more accuracy

● good news:

=> most of the pre-trained models are easy to access

51

Fine-tuning: Overview

52

53

Transfer Learning - Case 1

● ideal situation
● use architecture + weights
● retrain with own data
● low learning rates to keep the

knowledge

54

Transfer Learning - Case 2

● use it as a feature extractor
● modify the output layer
● do not retrain

55

Transfer Learning - Case 3

● freeze the first k layers
=> only basic patterns

● retrain the others

56

Transfer Learning - Case 4

● “worst case”
● low similarity => usage of the

model not effective
● build your own CNN

Common Criticism

57

The features learned by a

neural network are not interpretable!

Visualize the activations

58

● Why?

Discover which features are learned by comparing of activation with the
original image

● How to:
1. Pass the image through the network
2. Show the activations of a certain layer for all channels

Example: AlexNet - Recap

59

Example: AlexNet - Convolutional Layer 1

60

● colorscale: grayscale 0-1
● 96 boxes for 96 filters
● white pixel: strong positive

activation
● black pixel: strong

negative activation

Filter 32

61

=> channel activates on red pixels

Example: AlexNet - Convolutional Layer 5

62

Convolutional Layer 5 Filter 3 and 5

63
=> activated on eyes

Another example: Conv Layer 1

64

Visualize the weights

65

● Why?

Usually well-trained networks show nice and smooth filter patterns.

● How to?
○ Choose layer
○ Display the weights of all filter after the whole learning

Inspecting layer 1
of AlexNet

66

Conv Layer 1

67

● 96 filters
● size: 11x11
● 2 streams:

○ high-frequency
grayscale features

○ low-frequency color
features

Summary
Activation Visualization:

● channels in earlier layers:
○ edges
○ colors

● channels in later layers:
○ complex features
○ eyes, mouth

=> recognize dead channels

68

Weight Visualization:

● patterns in early layers
○ smooth
○ well-formed

● patterns in later layers
○ less interpretable
○ too many

=> recognize “primitive” noisy
patterns

Advanced techniques

69

● Heatmaps
● Maximally activating images
● Reconstruct original images
● Deep Dream Images
● ….

=> most of the frameworks
have build in visualizations
techniques

References of this Section

70

http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/understanding-cnn/
https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/
https://www.analyticsvidhya.com/blog/2017/06/transfer-learning-the-art-of-fine-tuning-a-pre-trained-model/

#5 Limitations & Outlooks

●

●

●

●

71

Limitations of CNN

72

“Coordinate Frame” in Human Vision

73

https://www.youtube.com/watch?v=Mqt8fs6ZbHk&t=562s

What is a Capsule?

“A capsule is a group of neurons whose activity vector represents
the instantiation parameters of a specific type of entity such as an
object or an object part.”

General ideas:
➢ Each dimension of v represents the characteristic of pattern;
➢ The norm of v represents the exsistence (confidence). !!!

74

Capsule

Capsule

Capsule

activity vector

group of neurons

object parts entity

Traditional v.s. Capsule Neuron

Traditional Neuron: Scalar → Scalar

Activation
function

Squashing

????

75

Capsule Neuron: Vector → Vector

Scalar

Column Vector

????

Squashing

76

Squashing

update “agreement”

RNN????

is confidence

Here: T=2

Routing
Algorithm

“agreement”

Dynamic Routing (by Agreement)
Initialize
for r in range(1...T)

9x9

ReLU Conv

9x9
(x8)

[28x28x1] [20x20x256]

A Capsule Network (CapsNet) for MNIST
➢ →
➢ → →
➢ → →

77

1

2

3

4

5

6

7

8

9

0

argmax

DigitCaps

[16x10]PrimaryCaps

[6x6(x8)x32]

32

Interpretable Activity Vector

78

➢ Each dimension contains a specific information (pattern)
Reconstruction

Network

Summary of CapsNet

79

● Keypoints of Capsule:
○ Vector → Vector (Tensor → Tensor)
○ Encapsulate entity or its pattern
○ Routing by agreement
○ Invariance v.s. Equivariance

● Future works:
○ Other squashing
○ Improving routing process
○ …

References of this Section

80

https://www.youtube.com/watch?v=Mqt8fs6ZbHk&t=562s
https://www.youtube.com/watch?v=Mqt8fs6ZbHk&t=562s

81

Q&A

82

83

84

BACKSTAGE SLIDES

Routing v.s. Backpropagation (on Fashion MNIST)

85
with backpropagationwithout backpropagation

Why Routing? Memory Network (Hopping Machanism)

86

Interpretable Activity Vector: Fasion MNIST

87

88

