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Designing and Evaluating an Adaptive Virtual Reality System using

EEG Frequencies to Balance Internal and External Attention States

Francesco Chiossi, Changkun Ou, Carolina Gerhardt, Felix Putze, Sven Mayer

• Developed a VR adaptive system utilizing EEG correlates of external and

internal attention to optimizing task performance and user engagement.

• Demonstrated the effectiveness of online adaptation using EEG corre-

lates of attention, resulting in efficient user model.

• We adapted peripheral environmental factors rather than manipulating

main task features, leading to subtle and natural adaptations that

improve task performance.

• Achieved an accuracy of 86.49% in classifying internal and external

attention states using an LDA model trained on selected EEG frequency

bands features.
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Abstract

Virtual reality finds various applications in productivity, entertainment, and

training scenarios requiring working memory and attentional resources. Work-

ing memory relies on prioritizing relevant information and suppressing ir-

relevant information through internal attention, which is fundamental for

successful task performance and training. Today, virtual reality systems do

not account for the impact of working memory loads resulting in over or

under-stimulation. In this work, we designed an adaptive system based on

EEG correlates of external and internal attention to support working memory

task performance. Here, participants engaged in a visual working memory

N-Back task, and we adapted the visual complexity of distracting surrounding

elements. Our study first demonstrated the feasibility of EEG frontal theta

and parietal alpha frequency bands for dynamic visual complexity adjust-

ments. Second, our adaptive system showed improved task performance and

diminished perceived workload compared to a reverse adaptation. Our results

show the effectiveness of the proposed adaptive system, allowing for the

Preprint submitted to IJHCS November 20, 2023



optimization of distracting elements in high-demanding conditions. Adaptive

systems based on alpha and theta frequency bands allow for the regulation of

attentional and executive resources to keep users engaged in a task without

resulting in cognitive overload.

Keywords: Neuroergonomics, Attention, Virtual Reality, Working Memory,

Physiological Computing, Adaptive Systems

1. Introduction

The immersive nature of Virtual Reality (VR) environments allows users

to engage with a wide range of realistic scenarios, making it an ideal tool

for various applications, such as remote collaboration (Knierim et al., 2021),

training (Zahabi and Abdul Razak, 2020) and entertainment (Lécuyer et al.,

2008). Here, productivity settings benefited from specific VR applications.

However, VR environments’ inherent predominant visual nature can challenge

users’ capacity to process information. For example, users have been over-

whelmed when the VR system provided excessive visual stimuli for training in

visual tasks (Ragan et al., 2015), spatial memory (Huang and Klippel, 2020),

and immersive analytics (Bacim et al., 2013; Gonçalves et al., 2022).

Researchers have proposed adaptive systems that aim to detect if a user

is overwhelmed and adjust the VR environment. One promising approach to

detect such overload states is to employ physiological measures, potentially

allowing for online adaptation. A potentially robust approach is detecting

the relationship between internally-oriented (Hutchinson and Turk-Browne,

2012) and externally-oriented (Jiang et al., 2021a) attention using EEG. This

is specifically relevant, as many VR tasks can share internal attention (Rowe
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et al., 2000; Magosso et al., 2019) and external attention features (Ricci et al.,

2022; Magosso et al., 2019). Users might become overwhelmed, distracted

and lose focus if external attention is prioritized over internal attention. On

the other hand, users may miss important external cues if they are in a

predominant internal attention state, leading to suboptimal performance in

VR. Thus, optimizing internal and external attention processes in VR settings

is crucial. Therefore, it is not a matter of whether a task employs internal or

external attention exclusively but rather how to optimize one in the face of

the other. This is consistent with Chun’s taxonomy that internal and external

attention are part of a continuum Chun et al. (2011).

Internal and external attention share specific EEG features in this contin-

uum (Putze et al., 2016; Benedek et al., 2014; Cona et al., 2020), i.e., alpha

and theta frequency bands. Alpha power is associated with enhancing rele-

vant sensory information processing and concurrent suppression of irrelevant

information. Theta mediates Working Memory (WM) and cognitive control

processes (Pastötter et al., 2013). In the context of VR systems, they have

also been associated with increased immersion and engagement with the VR

task (Magosso et al., 2019; Ricci et al., 2022). Previous work has employed

alpha and theta frequency bands in adaptive VR systems focused on neuro-

feedback for concentration (Kosunen et al., 2016), cognitive training (Dey

et al., 2019) and immersion enhancement (Woźniak et al., 2021). However,

most physiologically-adaptive systems focused on main task features, such

as visual search targets (Dey et al., 2019), learning material (Walter et al.,

2017) or secondary task difficulty (Chiossi et al., 2022a). The most closely

related to our work is the paper by Vortmann et al. (2019), that, even if in
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Augmented Reality (AR), used alpha and theta bands for offline classification

of internal and external attention states. Thus, the next step is to employ

alpha and theta bands for online adaptation of distracting features of the

environment from calibrating and allocating the user’s attention.

In this work, we designed and evaluated two VR adaptive systems based

on EEG correlates of external and internal attention, i.e., alpha and theta

frequency bands, that either optimize for external attention or internal atten-

tion. We engaged participants in a visual WM task recruiting mostly internal,

but also external and attentional resources while adapting the peripheral

amount of visual distractors based on the detected attentional state. We

showed how optimizing for internal attention when engaged in a WM task

allows for dynamic adaptations of visual distractors, resulting in an increased

WM task performance. We interpreted this as we supported users in avoiding

distracting external attention states while remaining engaged with the virtual

environment and maintaining an optimal internal attention state. We make

the following contributions: we designed a VR adaptive system that employs

visual complexity to dynamically support task performance and engagement

(I) and showed that online adaptation of EEG correlates of external and

internal attention results in efficient user modeling (II). Third, our study

offers a new contribution by focusing on adapting peripheral environmental

factors without manipulating main task features using EEG correlates of

internal and external attention (III). Fourth, based on selected EEG frequency

features, we trained a Linear Discriminant Analysis (LDA) model (Vortmann

and Putze, 2021; Wang et al., 2007) and classified participants’ internal and

external attention states with an accuracy of 86.49% (IV). Finally, we make
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the VR adaptive system openly available with a recorded dataset of behavioral,

qualitative, and EEG data (V).

2. Related Work

In the following, we highlight the relevance of investigating internal and

external attentional states for VR, and then we discuss their EEG correlates

in terms of alpha and theta frequency bands. Finally, we summarize previous

work that employed EEG as input for adaptation in VR.

2.1. Relevance of Internal and External Attentional States in VR

When immersed in VR, our senses are constantly stimulated, allowing us

to interact with the virtual experience. Sensory inputs such as vision and

hearing have a strong influence on attention. Still, visual stimulation received

the most interest (Hutmacher, 2019), and it is specifically relevant for VR

systems, as it is the most predominant stimulated channel in VR (Hvass

et al., 2017) and can influence the orientation of human attention (Souza and

Naves, 2021). Attention orienting can be described according to the taxonomy

proposed by Chun et al. (2011) for external and internal attention.

External attention is drawn to external stimuli. Task demands can vol-

untarily drive external attention in a top-down manner, such as when we

focus on a specific spatial location or feature of sensory stimuli that is goal-

relevant (Verschooren et al., 2019). Alternately, external attention can be

captured involuntarily by an object or event in a bottom-up manner, even

without specific intention of attending to them (Cona et al., 2020).

Internal attention reflects the processing of internal representations of

information. For example, retrieving information about recent or past events
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(episodic memory) (Hutchinson and Turk-Browne, 2012), information to be

manipulated in WM (Myers et al., 2017), and mental imagery or calcula-

tion (Putze et al., 2016).

Currently, HCI research mostly focuses on internal and external attention

for investigating levels of immersion and engagement in VR systems. For

example, Magosso et al. (2019) explored the conflict between external and

internal attention when asked to perform a mental arithmetic task (internal

attention) and being immersed in a VR environment (external attention).

They reported that a highly-detailed VR environment exerted an external

attention capture similar to a reading task, as shown in EEG alpha power.

Their result was also confirmed in Ricci et al. (2022), which reported how

exposure to a VR environment increased their attention to the external

environment compared to a relaxation state, a task that recruits internal

attention resources.

Attentional states also influence how much users can be engaged with a

specific task. Katahira et al. (2018) investigated different flow experiences in

an internal attention task, i.e., mental arithmetic task (Putze et al., 2016),

and found that EEG correlates of external and internal attention discriminated

between states of overload, boredom and flow. Thus, investigating the external

and internal attentional state can benefit users’ level of immersion (Souza

and Naves, 2021) and task engagement (Katahira et al., 2018).

However, it is important to state that external and internal attention

rather than independent states are part of a continuum (Chun et al., 2011).

The continuum between external and internal attention provides a fertile

ground for developing adaptive systems. This aspect is specifically relevant
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for settings where the visual components prevail, such as VR. In particular,

the visual nature of VR environments makes it challenging to direct internal

attention but also creates opportunities to guide external attention. By

leveraging this continuum, adaptive systems can tailor the VR experience to

the user’s attentional needs and goals, supporting them in achieving optimal

performance, immersion and engagement.

2.2. Alpha and Theta Frequency Bands as an EEG Correlate of External and

Internal Attention

A large number of studies investigated neurophysiological mechanisms

underlying external and internal attention. EEG studies, in particular, have

strongly supported the functional significance of two brain oscillatory rhythms:

theta (4-8 Hz) and alpha (8-12 Hz). Variations in external and internal atten-

tion states are strongly linked to the modulation of alpha and theta frequency

bands. These relationships highlight the importance of understanding the

underlying mechanisms and their implications for designing efficient VR

adaptive systems that are grounded in physiological inference (Allanson and

Fairclough, 2004).

The alpha rhythm is the dominant oscillatory rhythm of the human brain

and is traditionally linked to attentional load changes (Foxe and Snyder,

2011). Alpha band power is thought to act as a sensory gating mechanism by

enhancing relevant sensory information processing and suppressing irrelevant

information processing (Jensen and Mazaheri, 2010; Foxe and Snyder, 2011).

Thus, alpha activity plays a crucial role in regulating attention processes, both

within and outside the focus of attention. Studies have explored posterior

alpha as a possible index of internal and external attention, with external
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attention linked to alpha power decrease and internally directed attention

primarily associated with alpha power increase (Cona et al., 2020; Benedek

et al., 2014). Specifically, alpha increase aims at preventing external, irrelevant

sensory information from interfering with internal processes. On the other

hand, when individuals enter an external attention state, alpha power tends

to decrease in the occipital region. This decrease in alpha frequency band

reflects increased excitability of the visual cortex, which in turn enhances the

processing of external sensory information (Van Diepen et al., 2019).

Regarding theta frequency band, its increased power has been linked to

WM engagement and cognitive control, particularly in frontal regions (Har-

mony, 2013). Both WM and cognitive control involve internal attention

features. WM requires temporarily maintaining and manipulating internal

representations of information (Rerko and Oberauer, 2013). Cognitive con-

trol refers to the ability to regulate thoughts and actions to achieve specific

goals (Braver, 2012), and therefore ignoring task-irrelevant or distracting

information (Lavie, 2010). The theta activity could be indicative of a balance

between external and internal attention (Cona et al., 2020) and their compe-

tition (Magosso et al., 2021). Theta decrease may signify the act of shifting

attention towards external stimuli, allowing for the processing of potentially

distracting information. In contrast, an increase in frontal theta underlies

protection and prioritization of ongoing internal processing (Lorenc et al.,

2021; de Vries et al., 2020).

In conclusion, alpha and theta changes can index different levels of the

continuum between external and internal attention, namely, their competition.

In the next section, we review adaptive and passive BCI (pBCI) systems that
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employ such frequency bands as input for VR systems.

2.3. EEG as an Input for Adaptation in Virtual Reality

EEG frequency bands have been used as the primary input for interaction

in pBCI systems. A pBCI system derives an output from automatic, invol-

untary, spontaneous brain activity, interpreted in the given context (Lotte

et al., 2018). Historically designed for communication and control for patients

with severe disabilities, pBCIs recently found new applications for patients

and healthy users when combined in VR settings (Lécuyer et al., 2008). pB-

CIs and VR can see reciprocal benefits as pBCI can become more intuitive

than traditional devices. At the same time, VR can enrich interaction and

provide more motivating feedback for pBCI users than traditional desktop

settings (Aricò et al., 2018). Therefore, VR-pBCI or physiologically-adaptive

VR systems could support system learnability, i.e., reduced time required

to learn BCI skills or increased classification performance (Leeb et al., 2006;

Ron-Angevin and Dı́az-Estrella, 2009), and allow for an extensive range of

applications (Chiossi et al., 2022b).

In VR adaptive systems, alpha and theta were the basis for designing

adaptive systems for meditation (Kosunen et al., 2017) and adaptation of task

difficulty based on cognitive interference (Wu et al., 2010). Another related

work focused specifically on alpha for cognitive training is the study by Dey

et al. (2019), where authors modulated the visual task difficulty in a VR visual

search task. Finally, frontal theta power has also been employed in adaptive

systems to index the continuum between overload and optimal motivational

engagement (Ewing et al., 2016). Closer to our work, even though applied to

AR settings, are the adaptive systems developed by Vortmann et al. (2022);

9



Vortmann and Putze (2020). Here, the authors employed the entire EEG

frequency spectrum and eye tracking to categorize internal and external

attention with an 85.37 % accuracy in a special alignment task.

Previous work explored alpha and theta EEG frequencies for adaptation in

human factors, VR and AR environments, but mostly for interaction methods

and monitoring cognitive load or task engagement. However, only a few

works investigated the use of EEG for external and internal attention in VR

settings (Magosso et al., 2019, 2021) and adaptive systems have been designed

only in AR settings (Vortmann et al., 2019). Our research is the first that

investigates how to develop an adaptive VR system to optimize for internal

attention, grounded in physiological inference (Allanson and Fairclough, 2004),

and validated in a user study.

2.4. Summary

The immersive nature of VR technology has revolutionized how we interact

with digital content. However, VR is primarily designed around visual infor-

mation that challenges users’ capacity to process information (Bacim et al.,

2013; Gonçalves et al., 2022), leading to an unbalanced allocation of external

attention resources at the expense of internal attention (Vortmann and Putze,

2021). Thus, the design of an adaptive VR system grounded in EEG correlates

of external/internal attention state, leveraging the amount of task-irrelevant

elements in the internal-external attention continuum (Chun et al., 2011),

can impact subjective workload, engagement, and task performance (Aricò

et al., 2018). Here, we compare two adaptive systems, one optimizing for

external attention (Negative Adaptation) and one for internal attention

(Positive Adaptation) while participants engaged in a visual N-Back, a
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task that primarily recruits internal attention but also features both attention

components, which act along a spectrum. Based on related work, we designed

an adaptive system to support performance by balancing the two attentional

components. However, given the inherent trade-off, we designed two systems

that optimize for external or internal attention, we hypothesize that:

HP1: An adaptive system designed for balancing the attention competition

towards internal attention should positively impact WM task perfor-

mance.

HP2: An adaptive system designed for balancing the attention competition

towards external attention should negatively impact WM task perfor-

mance.

HP3: By optimizing the visual complexity and achieving a balanced alloca-

tion of internal and external attention resources, the adaptive system

designed for internal attention is hypothesized to increase subjective

engagement in the WM task.

HP4: If the adaptive system balancing for external attention has a detrimental

effect on WM task performance, we expect increased subjective workload

ratings.

Moreover, detecting and understanding a user’s attentional state could

significantly enhance the utility of VR systems and enable novel use cases

that are purposefully designed to react, detect and optimize it (Allanson and

Fairclough, 2004). Therefore, drawing from AR settings (Vortmann et al.,

2019; Vortmann and Putze, 2021) and considering how much internal and

external attention are recruited in VR settings, we expect that:
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HP5: External and internal attentional states in VR can be reliably classified

using an LDA model (Wang et al., 2007; Vidaurre et al., 2010).

We explore classification-based differentiation of external and internal

states as an alternative to literature-driven selection of adaptation variables

from the EEG signal. Potentially, machine learning can better balance

multiple such variables in one model and deal better with EEG trial-by-trial

fluctuations (Lotte et al., 2018). As this approach requires more tuning and

is less predictable, we explore its potential for future adaptation approaches.

3. Architecture of the EEG-Adaptive VR System

VR environments are often designed to be immersive, realistic, and en-

gaging, making it easy for users to become distracted or overwhelmed by

external visual stimuli. Thus, we might see a constant competition between

internal and external attention when engaged in VR scenarios. Here, an

EEG-adaptive system can monitor users’ attentional states and optimize

attentional processing to improve internal task performance in VR settings

by adapting surrounding visual information. We define the goal of optimizing

attentional processing as enhancing the efficiency and effectiveness of atten-

tional processing necessary for a given task. This goal requires identifying and

achieving an ideal balance between external and internal attentional processes

to improve task performance while maintaining engagement with the virtual

environment. The critical aspect is not whether a task exclusively relies on

internal or external attention, but rather how to achieve an optimal balance

between the two. For example, during a mostly internal task, the goal is to

provide external attention as much as possible without compromising the
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focus on the internal processing of the task. This aligns with Chun et al.

(2011) perspective that internal and external attention are interconnected

along a continuum, and their interaction must be considered when optimizing

attentional processing.

In this work, we designed and compared two VR adaptive systems based

on EEG correlates of internal and external attention. We frame the adaptive

systems from the perspective of a situation in which being in a state of

internal attention is desirable. Specifically, the system called from here on

Positive Adaptation is designed to optimize the internal attention state.

In contrast, the system defined as Negative Adaptation aims to optimize

externally-directed attention. We used the visual WM N-Back task developed

by Chiossi et al. (2022a) for both adaptive systems. We chose the VR N-Back

task as it recruits WM resources and results in changes in alpha and theta

frequency bands (Chiossi et al., 2023a; Tremmel et al., 2019). We adapted

the surrounding visual complexity of the VR environment in the form of non-

player characters (NPCs) that were passing next to the participant. We denote

the number of NPCs passing by the participants per minute as Stream. The

Stream of NPCs was constant, making NPCs appearing/disappearing at

the same rate. The Stream of NPCs contributes to the general amount of

detail, clutter and objects in the scene, namely its visual complexity (Olivia

et al., 2004). NPCs are task-irrelevant elements, and for the purpose of this

task, they act as distractors.

3.1. EEG Adaptive System

Both adaptive systems shared the same apparatus encompassing four

components: (I) an R-Net 64 channel EEG with two wireless LiveAmp
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amplifiers (BrainProducts, Germany), (II) Transmission Control Protocol

(TCP)/Internet Protocol (IP) for online EEG data preprocessing (III) the

Unity 3D (Version 2022.1) game engine for VR development; and (IV) HTC

Vive Pro (HTC, Taiwan) VR HMD for the display of the VR environment. For

online adaptation, we first applied a notch filter at 50 Hz and then performed a

band-pass filtering between (1-70 Hz) to remove high and low-frequency noise.

Then, we extracted alpha and theta EEG powers via Welch’s periodogram

method using a Hamming window of 5 seconds at 50% overlap, zero-padded

to 10 s, to obtain a 0.1 Hz frequency resolution. For determining the alpha

frequency range, we computed the Individual Alpha Frequency (IAF) via the

method developed by Corcoran et al. (Corcoran et al., 2018). This allowed us

to identify an individualized alpha range for each participant. Then, based

on the individual alpha lower bound, we defined the theta frequency range,

using the alpha lower bound as the high theta bound and defining the theta

lower bound by subtracting 4 Hz from the alpha lower bound. For computing

alpha power we used parieto-occipital channels (P3, Pz, PO3, POz , PO4,

O1, O2) (Benedek et al., 2014; Magosso et al., 2019), while for theta, we

chose frontal channels (Fp1 , Fp2, AF3, AF4, F1, F2, F3, Fz, F4, FC1,

FC2) (Magosso et al., 2019). Electrode FCz was set as an online reference.

For data streaming and online preprocessing, we transmitted the data

through a Transmission Control Protocol (TCP)/Internet Protocol (IP) client

to a TCP/IP server implemented via Python network programming. This

implementation enabled us to exchange data between Lab Streaming Layer1

1https://labstreaminglayer.org/
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(b) Negative Adaptation

Figure 1: Adaptation Methodology for the two adaptive systems based on the increase

and decrease of the alpha and theta frequency bands and their relevance to internal and

external attentional states.

and the VR Unity environment in both forward and backward directions. We

utilized a Network Time Protocol (NTP) service to time-synchronize the VR

Unity scene’s time and the bridge server’s operating system time.

3.2. Adaptive System Architecture

Adaptive system architecture was grounded on previous work on the

functional significance of alpha and theta frequency bands (Putze et al., 2016;

Benedek et al., 2014; Vortmann et al., 2019) as input for the VR adaptive

systems. First, we used a continuous adaptation, continuously comparing the

mean alpha and theta bands over two consecutive time windows, w1 and w2,

both of 20 seconds duration , based on previous work Chiossi et al. (2022a,

2023a). Second, we compute the mean alpha and theta power for w1 and

w2. Here, we compare the direction of change (defined as exceeding a 15

% threshold) of both mean alpha and theta in w2 to the average power in

w1. We determined the threshold after multiple sessions (N=14, M = 25.62,

SD = 2.52; 7 female, 7 male, none diverse) to identify a threshold allowing
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IAF Computation (αlow ~ αhigh)

Feature extraction w1

Alpha (αlow ~ αhigh) & Theta ( αhigh ~ Θhigh)

Feature extraction w2

Alpha (αlow ~ αhigh) & Theta ( αhigh ~ Θhigh)

Signal Processing

20 s

EEG Signal Acquisition

Negative 
Adaptation

+ 16 NPCs

-8 NPCs

External Attention Optimization

Internal Attention Optimization

Positive 
Adaptation

+ 16 NPCs

-8 NPCs

Figure 2: Architecture of the two adaptive systems. The Stream of NPCs adapts based on

alpha and theta variation in two different time windows (w1 and w2), each lasting 20s. If

the change is bigger than the decision threshold of 15%, the NPC stream is either increased

by +16 or decreased by -8 NPCs. The Positive Adaptation system (a) aims at optimizing

internal attention, while the Negative Adaptation system (b) targets external attention.

the system to optimize external attention while avoiding overshooting, i.e.,

always performing the same adaptation response or undershooting, i.e., not

reacting to changes in alpha and theta EEG frequencies. We tested multiple

thresholds (5% steps from 5-30%) and evaluated system performance. If the

change from w1 to w2 of both alpha and theta exceeded the decision threshold,

depending on the direction of the frequency band, a change in Stream of

NPC is performed. We define our optimization goal as biased towards that

specific type of attention, but still tries to maintain a certain balance.

In the Positive Adaptation system, when a shared 15% increase in both

alpha and theta is detected in w2, as compared to the previous 20 s in w1, the

user is assumed to be in an internal attention state, therefore to find an optimal

level of visual complexity, the system increases the Stream by 16 NPCs . By
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(a) Visual Monitoring (b) N-Back No Adaptation

(c) N-Back Positive Adaptation (d) N-Back Negative Adaptation

Figure 3: Game VR Capture of the experimental tasks. In the Visual Monitoring task (a),

participants were exposed to a Stream of NPCs and asked to monitor, i.e., follow with

their gaze NPCs with a specific colour. In the N-Back No Adaptation (b), participants

actively interact with a sequence of spheres presented on a marble-like pillar and have to

place them into either the left or right bucket. The placement of each sphere is determined

by its color, and the sphere’s color presented two steps prior (N=2). The sphere has to be

placed on the left if the color is different and on the right bucket, if the color is the same.
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doing so, we aim to test the tradeoff between internal attention and external

visual complexity. This approach allows us to investigate how individuals

adapt to a dynamic environment where attentional demands are subject to

change. In the opposite case, when alpha and theta decrease by at least 15 %

, participants are assumed to be in an external attention state. Therefore,

8 NPCs are removed from the scene to support the internal attention state.

This decision tree is grounded on the fact that internal attention is associated

with an increase in alpha (Benedek et al., 2014; O’Connell et al., 2009) and

theta (Cona et al., 2020), and reflecting increased WM engagement (de Vries

et al., 2020). Alternately, theta and alpha can show opposite directions. When

alpha decreases and theta increases by 15%, we assume that users entered

an external attention state as indexed from alpha band (Benedek et al.,

2014), and increased cognitive control (Braver, 2012) due to the increased

effort to maintain the focus while ignoring the distractors. In this case, the

Stream is decreased by 8 distractors. In contrast, if alpha increases and theta

decreases, we theorize an increase in internal attention and a decrease in WM

engagement. Therefore, we increase the Stream by adding 16 distractors.

Those parameters are based on previous work on adaptive system design

accounting for the task irrelevance and distracting effect of the NPCs Chiossi

et al. (2023a,b). Secondly, they allow to avoid the numbers of distracting

NPCs drops to 0 per minute. Participants started the adaptive blocks with

a Stream set at 115 NPCs entering the scene per minute. On average,

Stream in Positive Adaptation condition stabilized on 133.17 NPCs per

minute (SD = 14.86), seeFigure 5. Participants executed a mean of 152.25

(SD = 73.19) WM trials in Positive Adaptation, 167.33 (SD = 68.04), in
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Negative Adaptation 182.96 (SD = 68.53). The Positive Adaptation

methodology is depicted in Figure 1a and the architecture in Figure 2.

The Negative Adaptation system, optimizing for external attention,

follows a different strategy. Thus, the Stream is increased when the partici-

pants are detected in a state of external attention or when there is a decrease

of at least 15% in alpha power in w2 compared to w1 (Ext-Int competition),

pointing towards an increased state of external attention. When alpha and

theta bands show an increase of 15% in w2, and therefore in a state of internal

attention, the Stream is increased to drive participants in a higher visual

complexity environment and increase their external attention state. When the

participants are in a state of external-internal competition, i.e., alpha power

increases and theta decreases, reflecting an increase in internal attention but

a decreased WM engagement, the Stream is decreased by - t8 NPCs to

drive them in a state of boredom, as previously designed by Ewing et al.

(2016). This choice is meant to evaluate if adaptation can still impact the

user’s WM performance without improving it, demonstrating that BCI-based

adaptation cannot be replaced equivalently with a purely performance-based

one. If participants already exhibit an internal focus of attention, this might

decrease engagement with the task, enforcing such an internal state. Finally,

when alpha and theta have the same direction, indexing an internal attention

state, the system increases the visual complexity by adding 16 NPCs to the

Stream. On average, Stream in Negative Adaptation condition stabi-

lized on 161.48 NPCs per minute (SD = 21.8). The Negative Adaptation

methodology is depicted in Figure 1b and the architecture in Figure 2.
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Figure 4: Experiment Procedure. The experiment encompassed six different blocks. In

between blocks, participants filled in NASA-TLX and GEQ subscales and observed a

three-minute pause in VR. Blocks order was randomized for the Visual Monitoring, N-Back

with No Adaptation and N-Back with Positive or Negative Adaptation. In the first block,

participants maintained their eyes closed to compute the Individual Alpha Frequency

(IAF). In the Resting state block, participants relaxed in the neutral VR environment with

distracting elements. After those two blocks, participants experienced the experimental

tasks (Visual Monitoring, N-Back No Adaptation, N-Back Positive Adaptation, N-Back

Negative Adaptation block) in a randomized order. Refer to Section 3 for a complete

description of the adaptive systems.

4. User Study

The study evaluated if adaptation of visual complexity, based on EEG

correlates of internal and external attention, can optimize behavioral WM

performance and subjective engagement ratings compared to a system de-

signed to optimize for external attention. As the main task, we chose the

established N-Back task (Soveri et al., 2017) in the VR version as adapted

from Chiossi et al. (2022a). The task involved updating the information in

working memory and paying continuous attention to the presented spheres

while retaining the previously presented information. We selected this task

because it evokes external and internal attention processing, making it ideal
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for optimizing one of the two processes in adaptive systems.

4.1. Design

To examine differences in behavioral performance, perceived workload

and engagement and alpha and theta frequency bands, we performed a

within-subjects study for the system’s adaptability factor (Positive vs

Negative Adaptation). The experiment encompasses six blocks, of which

four are the experimental ones and either recruit only external (Ext-Att Task

: Visual Monitoring Task) or internal attention (Int-Att task : N-Back No

Adaptation), and two adaptive blocks which have a competition between the

two processing with two different adaptive systems (Ext / Int Task: N-Back

Negative Adaptation and Ext / Int Task: N-Back Positive Adaptation). The

first two blocks are the Individual Alpha Frequency Block (IAF computation

Block), which lasted 2 minutes and is necessary for computing the IAF for

each participant, and the Resting State block, used as a basal condition

for normalization to the experimental blocks. The Ext-Att Task (Visual

Monitoring task) requires participants to inspect the VR scene, identify and

follow with the gaze NPCs of a specific color, see Figure 3a. The Int-Att Task

(N-Back No Adaptation) is a visual N-Back task (N=2) where the participants

have to retain information regarding the color of a sphere and internally direct

attention towards the memory of the color of the sphere and compare it to

the color of the current sphere, and place in a specific bucket depending on

the match of the color, see Figure 3b. The two ”adaptive” experimental

conditions required participants to perform the N-Back task while being

exposed to a Stream of NPCs, i.e, an adaptation of the visual complexity

through changes in the participant’s alpha and theta EEG frequency bands.
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In the two adaptive tasks, NPCs serve as distractors as they are elements

that are not relevant to the task at hand (see Figure 3c for the Positive

Adaptation and see Figure 3d for the Negative Adaptation). Respectively,

positive adjustments of Stream (Increase) resulted in adding 16 NPCs to the

scene, while negative adjustments of Stream (Decrease) resulted in removing

8 NPCs from the scene.

4.2. Task

Participants executed two types of tasks, i.e., Visual Monitoring task and

N-Back task. In the Ext-Att block, participants were exposed to a fixed

Stream (334 NPCs per minute) and were asked to monitor and follow with

the gaze approaching NPCs of a randomized color (blue, green, black and

red). This Visual Monitoring task is expected to recruit external attention

resources as it only requires visual processing and externally-directed attention

to participants. This block acts as a control condition as it is the only one in

which participants performed a task which mainly required external attention.

In the Int-Att Block and in the two adaptive blocks, participants executed

the N-Back (N=2) as adapted from Chiossi et al. (2022a). Here, participants

are presented with a sequence of spheres over a marble-like pillar that has to

be placed in one of two buckets on the left and the right, respectively. Spheres

could have been spawned in four possible colors (green, red, blue, and black),

according to McMillan et al. (2007), in a randomized sequence. Participants

were required to pick up the spheres with an HTC Vive Pro controller and

place them in the correct buckets. The placement of each sphere depended on

its color and the color of the sphere presented two steps before. If the colors

matched, the participant had to place the sphere in the right bucket. If the
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colors did not match, the participant had to put the sphere in the left bucket.

New spheres would appear either after the current sphere was placed in one

of the two buckets or after 4 seconds. Participants received accuracy feedback

every 20 sphere placements and were instructed to maintain a performance

level of 90%. Errors were computed by the proportion of times the sphere

was positioned in the wrong bucket.

4.3. Procedure

Upon participants’ arrival, we provided them with information regarding

the study’s procedure and addressed any inquiries they had before having them

sign the informed consent form. The study began with a trial phase to enable

participants to acclimate to the VR environment. During the VR trial phase,

participants practised the 2-back task until they achieved a minimum accuracy

level of 95% while identifying a sequence of 80 spheres (Chiossi et al., 2022a).

Next, the experimenter set up the water-based EEG cap. The experimental

procedure started with the IAF Block, where participants kept their eyes

closed for 2 minutes and 10 seconds. We describe the IAF computation in

Section 4.6 . Then participants observed 3 minutes of rest for physiological

adaptation (not included in the analysis) and started the Resting State

Block for 6 minutes. They sat comfortably in the VR environment without

NPCs or N-Back task elements, keeping their hands on their thighs without

moving. After the Resting State, participants moved to the experimental

phase consisted of four randomized experimental blocks (Ext-Int task, Int-Att

Task, Positive Adaptation and Negative Adaptation), lasting six minutes each.

In between blocks, participants fill the NASA TLX questionnaire to evaluate

perceived workload (Hart and Staveland, 1988) and the Game-Experience
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Questionnaire (GEQ) In-Core Module, choosing the Competence, Immersion,

and Positive Affection subscales for validated content validity for perceived

engagement (Law et al., 2018). Immersion and Competence subscales measure

the level of engagement participants experience with the task at hand which is

related to challenge immersion (Burns and Fairclough, 2015). Again, between

questionnaire completion, participants rest for 3 minutes in the VR scenario

for physiological adaptation. Overall, the experiment lasted one hour and

thirty minutes.

4.4. Participants

We recruited 24 participants (M = 28.5, SD = 6.06; 12 female, 12

male, none diverse) via convenience sampling and social media. However,

we removed 2 participants due to technical interferences, resulting in a total

population of 22. Participants provided written informed consent before their

participation. None of the participants reported a history of neurological,

psychological, or psychiatric symptoms.

4.5. Offline EEG Recording and Preprocessing

EEG data were recorded from 64 Ag-AgCl pin-type passive electrodes

mounted over a water-based EEG cap (R-Net, BrainProducts GmbH, Ger-

many) at the following electrode locations: (Fp1, Fz, F3, F7, F9, FC5, FC1,

C3, T7, CP5, CP1, Pz, P3, P7, P9, O1, Oz, O2, P10, P8, P4, CP2, CP6, T8,

C4, Cz, FC2, FC6, F10, F8, F4, Fp2, AF7, AF3, AFz, F1, F5, FT7, FC3,

C1, C5, TP7, CP3, P1, P5, PO7, PO3, Iz, POz, PO4, PO8, P6, P2, CPz,

CP4, TP8, C6, C2, FC4, FT8, F6, F2, AF4, AF8 according to the 10–20

system. Two LiveAmp amplifiers acquired EEG signals with a sampling rate
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of 500 Hz. All electrode impedances were kept below ≤ 20 kΩ. We used

FCz as an online reference and AFz as ground. For offline preprocessing we

used MNE Python (Gramfort et al., 2013). We first notch-filtered at 50 Hz

followed by a band-pass filter between 1-70 Hz to eliminate noise at high and

low frequencies. Next, we re-referenced the signal to the common average

reference (CAR) and applied the Infomax algorithm for Independent Compo-

nent Analysis (ICA). We utilized the ”ICLabel” MNE plugin (Pion-Tonachini

et al., 2019) for automatic classification and correction of ICA components.

On average, we removed 2.97 (SD = 5.19) independent components within

each participant.

4.6. Individual Alpha and Theta Frequencies Bands Range Computation

We employed the methodology established by Corcoran et al. (2018)

to calculate IAF, based on Klimesch (2012). This method enables us to

determine the alpha band at the individual level, taking into account the

differences between individuals, thereby facilitating a more accurate and

detailed online adaptation and offline analysis. We removed the first and

last four seconds of data from the beginning and end of each IAF recording

to remove signals unrelated to cortical activity and impacted by eye blinks.

For IAF computation, we use posterior electrodes (P3, Pz, PO3, POz , PO4,

O1, O2). Overall, the lower alpha range stabilized across participants on an

average of 8.02 Hz (SD = .09), while with the higher bound, we obtained

an average of 12.99 Hz (SD = 1.03). After determining the IAF for each

participant, we utilized this information to calculate the alpha power for

parieto-occipital electrodes employed for adaptation, see Section 3.1. For

Theta power, we applied to a window of 4 Hz falling below the alpha lower

25



11 23 35 47 58 70 82 94
Progress (%)

60

80

100

120

140

160

180

St
re

am
 V

ar
ia

tio
n

Positive Adaptation
Negative Adaptation

Figure 5: Stream Visualization. Here, we depict the average evolution over time of the

Stream for the two adaptive systems. The Positive Adaptation averaged on 133.17

NPCs per minute while the Negative Adaptation on 161.48 NPCs.

bound computed from the IAF. Participants showed an average theta range

of 4.02 Hz (SD = .09) - 8.02 (SD = .09). We then computed the Theta

power from the frontal electrodes selected for adaptation, see Section 3.1.

5. Results

In this section, we first present results on EEG power bands, behavioural

accuracy and subjective scores on perceived workload (NASA-TLX) and

engagement (GEQ) using Repeated measures ANOVA or Friedman’s test for

not normally distributed data as evaluated by the Shapiro-Wilk test. For

post hoc comparisons, we use Conover’s tests with Bonferroni correction.

We compared the effect of Block (N-Back No Adaptation, N-Back Positive

Adaptation, N-Back Negative Adaptation) over measured dependent variables.
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Figure 6: EEG Results. Boxplot representing average Alpha (left) and Theta (right)

frequencies. Frequencies were obtained from the parieto-occipital channels for Alpha, while

for Theta, we chose frontal channels. Values are computed for each experimental condition

and normalized to the resting state.

For subjective measures, we also include the Visual Monitoring task for

comparison. We employ a Generalized Linear Mixed Model (GLMM) for

reaction times to investigate differences in the reaction time distributions.

Finally, we report our results on the classification of the two attentional states

based on Visual Monitoring (External Attention) and N-Back task with No

Adaptation (Internal Attention).

5.1. EEG Results

5.1.1. Alpha

The normality of Alpha power was assessed using the Shapiro-Wilk test,

which indicated that the data were normally distributed (W = 0.98, p = .18).

A repeated measures ANOVA was conducted to examine the effect of Block
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Figure 7: Behavioral Results. On the left (a), we present the results on Behavioral Accuracy.

Here, participants significantly showed higher accuracy in N-Back and Positive Adaptation

conditions as compared to the Negative Adaptation. On the right (b), we present an

overview of reaction time distributions, separated by correct and error responses. No

significant differences were detected in reaction times distributions.

on Alpha. A Repeated Measures ANOVA did not show any significant

differences (F = .45, p = .71) as depicted on the left in Figure 6.

5.1.2. Theta

As Theta power was not normally distributed (Shapiro-Wilk, W = 0.96,

p = .02), we conducted a Friedman test indicating that the average Theta

power did not change significantly across the different Blocks (χ = 1.28,

p = .73) as depicted on the right in Figure 6.

5.2. Behavioral Results

5.2.1. Accuracy

Shapiro-Wilk test showed a not normal distribution of accuracy scores

(W = 0.96, p = .04). We tested the effect of Block on Accuracy via a

Friedman’s test. We found a significant main effect (χ = 27.36, p < .001).
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Figure 8: Subjective Results. Box-plots for perceived workload (NASA-TLX) and en-

gagement (GEQ). Participants reported significantly more workload in the N-Back task

with Negative Adaptation. Regarding perceived engagement, we found that participants

experienced more Positive Affection and Immersion in N-Back (No Adapt) and N-Back (Pos

Adapt) as compared to the Visual Monitoring task and the N-Back task in the Negative

Adaptation.

Post hoc comparisons with Bonferroni correction revealed that the mean

accuracy in Positive Adaptation (χ = 1.28, p = .73) (M = .88, SD = .06)

was significantly increased from the mean score for Negative Adaptation

(M = .74, SD = .07), p < 0.01. Additionally, the accuracy in Negative

Adaptation was significantly lower as compared to the N-Back Block

with no distractors (M = .88, SD = .06), p < 0.01. Results are depicted in

Figure 7a.

5.2.2. Reaction Times

We fitted a GLMM using REML and a nloptwrap optimizer on raw correct

RTs with Block (N-Back No Adaptation, N-Back Positive Adaptation, N-

Back Negative Adaptation) as a fixed effect and participant and amount

of visual distractors per trial as a random effect. We selected formula rt

∼ Block +(1|participant) + (1|distractor). We removed outliers by
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Theta Alpha Stream Count

(a) Positive Stream variation for a representative participant

Theta Alpha Stream Count

(b) Negative Adaptation Stream variation for a representative participant

Figure 9: (a) Positive Stream variation and (b) Negative Adaptation Stream variation

for representative participants. Yellow and Blue lines indicate the normalized Theta and

Alpha frequency bands, while the dark red line represents the Stream Variation. Colored

areas indicate whether the system increased (light red) or decreased (light blue) the NPCs

Stream in a 20s time window. On top of each plot, the Stream increase is depicted by an

arrow pointing up ( ↑ ), while if the Stream decreases, the arrow points down ( ↓ ).

30



excluding values exceeding three standard deviations above the mean (Berger

and Kiefer, 2021). However, we did not report any significant results. See

Figure 7bb.

5.3. Subjective Results

5.3.1. Perceived Workload

As Shapiro-Wilk showed a normal distribution (W = 0.99, p = .95),

an ANOVA showed that average raw NASA-TLX scores were significantly

influenced by Block (F = 4.21, p < .001). Pairwise comparisons via a

Conover test with Bonferroni correction mimicked results on the accuracy,

showing that Negative Adaptation resulted in a significantly higher

workload (M = 70.13, SD = 16.97) than Positive Adaptation (M = 57,

SD = 13.09), N-Back (M = 57.65, SD = 16.94) and Visual Monitoring

(M = 54.81, SD = 27.21), all p < .001. No significant differences were

detected in other comparisons. Results are shown in Figure 8.

5.3.2. GEQ-Competence

The Shapiro-Wilk normality test indicated a not normal distribution for

the GEQ competence scores (W = .95, p = .001). A Friedman’s test revealed

no significant effects (χ = .51, p = .91), see Figure 8.

5.3.3. GEQ-Positive Affection

As the Shapiro-Wilk test showed a not parametric distribution (W = .95,

p = .002), a Friedman rank sum test was conducted to examine the effect of

Block on the GEQ Positive Affection scores. The analysis revealed a signif-

icant main effect of Block on GEQ Positive Affection scores (χ2 = 26.23,
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p < .001). Pairwise comparisons with a Conover test using a Bonferroni correc-

tion showed that GEQ Positive Affection scores in Negative Adaptation

were significantly lower (M = 1.11, SD = .79) than Positive Adaptation

(M = 1.86, SD = .98) and N-Back (M = 1.86, SD = .99), all p < .001.

Identical results were found in the comparisons with the Visual Monitor-

ing task, in which participants reported significantly lower subjective positive

affection (M = 1.13, SD = .97) than in the Positive Adaptation and

N-Back. No differences were detected in the comparison between Positive

Adaptation and N-Back. Results are depicted in Figure 8.

5.3.4. GEQ-Immersion

The Shapiro-Wilk test indicated that the GEQ Immersion scores distribu-

tion of GEQ Immersion scores was non-parametric (W = .95, p = .002). A

Friedman rank sum test revealed a significant main effect of Block (χ2 = 34.2,

p < .001). Pairwise comparisons showed that the GEQ Immersion scores in

Negative Adaptation (M = 1.36, SD = .1.36) were significantly lower

than those in Positive Adaptation (M = 2.98, SD = .83) and in N-Back

(M = 2.48, SD = .71), all p < .005. Visual Monitoring task condition showed

significantly lower Immersion scores (M = 1.52, SD = .96) as compared

to Positive Adaptation and N-Back ( p < .005). No differences were

detected in the comparison between Visual Monitoring and Negative

Adaptation, see Figure 8.

5.4. Classification

We evaluated the performance of a Linear Discriminant Analysis (LDA)

model for predicting internal and external attention. We used EEG data
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from the Visual Monitoring for the External Attention label and the N-Back

No Adaption for the Internal Attention label. We divided the dataset into

training and validation sets in an 80/20 ratio, using a participant-wise split.

The reported results include the accuracies and F1 score obtained on the test

set.

5.4.1. Feature Extraction

We extracted EEG features based on the Power Spectral Densities (PSD)

via Welch’s method. We computed averaged alpha and theta based on the

individual frequency range computed (see Section 4.6) and delta (0.5 - 4 Hz),

beta (13 - 30 HZ) and gamma (30-45 Hz) based on the preprocessing pipeline

described in Section 4.5. All frequency values were normalized based on the

Resting state data. We used electrodes chosen for adaptation for alpha and

theta as in Section 3.1. For beta, we used the same frontal electrodes as theta

(Putman et al., 2014), while for delta and gamma, we based our choice on

previous work in internal-external attention classification (Vortmann et al.,

2019; Vortmann and Putze, 2021; Harmony et al., 1996; Darvas et al., 2010).

The EEG features were computed on 20s intervals, mirroring the time window

used for adaptation.

5.4.2. Classification Accuracy

The LDA model was trained on data from a subset of participants (N=12)

and validated on data from a separate set (N=5). We then evaluated the model

on the remaining participants (N=5). The LDA model achieved a training

accuracy of .8 and a validation accuracy of .76 when using alpha, theta, beta,

delta, and gamma measures to predict internal or external attention. While
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we report an accuracy of .86 and an F1 score of .86 on the test data. To

understand which features were most informative for predicting internal and

external attention, we examined the weight coefficients of the LDA model.

The coefficients indicate the relative influence of each feature in predicting

attention. Specifically, a positive coefficient for a feature indicates that higher

values of that measure are associated with predicting external attention.

In contrast, a negative coefficient indicates that higher feature values are

associated with predicting internal attention. Our results showed that the

alpha measure was predictive of external attention, with a positive coefficient

of .372. Delta power was majorly predictive of internal attention, with a

negative coefficient of −1.04. The coefficients for the theta, beta, and gamma

measures were −.681, .281, and −.054, respectively. These results suggest

that alpha was specifically informative for external attention prediction, while

delta and theta were indicative for internal attention.

6. Discussion

We presented a physiologically adaptive VR system that employed EEG

correlates of internal and external attention to perform dynamic visual com-

plexity adjustments to enhance task performance. We evaluated the effect

of visual complexity adaptations, in the form of NPCs, on task performance,

Alpha and Theta power, subjective workload, and engagement. In the study,

participants performed a VR N-Back task recruiting WM resources. Here,

we discuss our results regarding the outcome of our adaptive algorithms for

modelling internal and external attention. Then, we envision applications

for online attentional state detection and classification in VR and reflect on
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limitations and future work.

6.1. Internal and External Attention Modelling

When users engage in VR tasks that feature both external and internal

processing components, we hypothesized that they could benefit from an

adaptation that could adjust the number of visual distractors in real-time to

optimize their attentional state and enhance task performance. To achieve

this, we designed two adaptive VR systems based on EEG alpha and theta

power to optimize external and internal attentional states, respectively.

We identified four initial hypotheses. HP1 and HP2 predicted that

the adaptive system designed for internal attention would improve WM

task performance, while the system designed for external attention would

decrease task performance. Our findings supported those two hypotheses,

showing that participants performed better on the visual WM task when

the adaptive system optimized distractors based on internal attention (HP1)

and performance decreased when external attention was optimized (HP2).

These results are consistent with previous research showing that attentional

resources are essential for successful WM performance as the balance between

external and internal attention can significantly affect task performance (Myers

et al., 2017). When we need to recall and manipulate visual information

and ultimately perform decisions, adapting task-irrelevant visual information

can improve our task performance. Conversely, it could be argued that

distracting information could be removed from the environment to optimize

internal attention for improving task performance. However, our results

show that adaptation of visual distractors based on internal attention states

enhanced perceived engagement through positive affection and immersion,
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supporting HP3. Participants reported higher levels of engagement when

the adaptive system optimized distractors based on internal attention. On

the other side, they reported significantly lower levels when interacting with

the Negative Adaptation. Incorporating real-time adaptation based on

internal attention states into VR systems could lead to more effective and

enjoyable user experiences when high-level cognitive processing is involved.

Additionally, our findings highlight the importance of considering internal and

external attention in designing VR systems. Optimizing one at the expense

of the other may adversely affect overall user experience and performance.

In fact, an increase in engagement could have impacted the increase in task

performance. Positive affection, for example, has been shown to enhance

the focus of attention (Rowe et al., 2007). Finally, we verified HP4, as

participants reported significantly higher levels of perceived workload when

interacting with the Negative Adaptation as compared to the Positive

Adaptation and to the N-Back with no distractors. This finding aligns

with previous research showing that increased external attentional demands

can lead to a higher perceived workload (Rissman et al., 2009; Kajimura

and Nomura, 2016). The perceived workload might have been associated

with the continuous need to actively filter out task-irrelevant information,

which can interfere with the processing of relevant information and increase

cognitive load. Our results suggest that an adaptive system that prioritizes

internal attention can enhance executive performance in a VR environment.

In contrast, external attention optimization can have a detrimental effect.

The results of the classification suggest that reliable decoding of internal

and external attentional states in VR settings is possible, replicating similar
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results derived from AR settings (Vortmann et al., 2019; Vortmann and Putze,

2021). Specifically, the main features contributing to the classification were

alpha for internal states and theta and delta for external states. We can

therefore state to have verified H5.

This finding is consistent with previous research on the role of alpha as a

regulatory frequency in the balance between internal and external attention.

Previous work showed how alpha decreases in response to attention-demanding

tasks (Klimesch, 2012). Similarly, the role of theta power for internal attention

is in line with previous literature, reflecting the maintenance of internal cogni-

tive processes and inhibition of distracting information (Sauseng et al., 2005).

More interesting is the relevance derived from delta frequency band. Delta

has been interpreted to act as a functional modulator of sensory afferences

that can interfere with internal concentration (Harmony, 2013). Moreover,

delta is associated with dynamic switching between external and internal

attention (Jiang et al., 2021b), supporting their role in the inhibition of

ongoing processes that can interfere with task execution. Our results align

with previous research on the role of these frequency bands in attentional pro-

cesses, highlighting their importance for understanding the neural mechanisms

underlying attention in immersive environments.

6.2. Applications for Attention-Aware VR adaptive systems

Our findings have implications for the design and implementation of VR

adaptive systems that aim to optimize attentional resources during tasks that

jointly require internal and external processing.
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6.2.1. Optimizing Internal Attention

We found that we can optimize internal attention and improve task

performance compared to an adaptive system that can be optimized for

external attention. Moreover, we report that the performance with distractors

in the Positive Adaptation did not significantly differ from the task

executed without distractors. This can be specifically relevant for three

application fields: VR productivity and cognitive training in healthy and

clinical populations.

Our work showed how internal attention optimization can support task

performance when engaged in a WM task. In the context of a virtual

office (Knierim et al., 2021), users might be novices to the multitude of

visual stimuli, representing the surroundings or human colleagues, i.e. VR

human avatars and more prone to distractions and inefficient workflows.

Additionally, NPCs function can be adapted to provide cues, prompts, and

reminders that can aid users in maintaining their focus and concentration on

the task at hand. The design of a system that can minimize distraction while

supporting engagement can be valuable for enhancing productivity in virtual

environments, particularly in tasks that require working memory.

Cognitive training is another application where optimizing internal at-

tention in WM tasks can be valuable. WM is essential in many cognitive

tasks, such as problem-solving, decision-making, and learning, and is im-

paired in various clinical populations, including individuals with attention-

deficit/hyperactivity disorder (ADHD) (Karbach and Verhaeghen, 2014).

Cognitive training interventions aim to support WM performance while gen-

eralizing to other cognitive functions and have shown promising results in
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healthy, ageing and clinical populations, including ADHD (Cortese et al.,

2016).

In VR, adapting the system to optimize internal attention during cognitive

training tasks could enhance the effectiveness of such interventions. Users

could more efficiently engage in cognitive training tasks by minimizing distrac-

tions and improving focus, leading to better outcomes. Additionally, NPCs

can be adapted to provide feedback, coaching, and reinforcement, enhancing

cognitive training outcomes Schroeder et al. (2020).

6.2.2. Optimizing External Attention

Internal and external attentional mechanisms play a crucial role in deter-

mining the effectiveness of VR applications. Even though the central purpose

of attentional mechanisms is to facilitate the processing of relevant information

over irrelevant one, sometimes internally directed attention can be undesired

depending on the VR application and user state scenario. Internal attention

might also refer not only to the prioritization of memory-related information

but also to mind wandering (Gruberger et al., 2011) and rumination (Chuen

Yee Lo et al., 2012).

Therefore, if the user is engaged in a scenario where the visual information

is task-relevant, but the user’s attention is internally directed, the VR system

can increase the perceptual salience to capture the users’ attention or pause

the interaction until they re-enter the external attention state. Such a scenario

can be found in VR content or motor learning and visual analytics (Keim

et al., 2008), where users are provided with highly detailed and animated

content. Such an interaction paradigm could prevent interrupting task-relevant

thoughts and ignoring external information. This type of application could
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be based on the Optimal theory of learning (Wulf and Lewthwaite, 2016),

which postulates that an external focus of attention can result in improved

learning skills compared to an internal one. Therefore optimizing for external

attention in VR could allow for designing better learning systems.

6.3. Limitations and Future Work

We acknowledge that our work is prone to certain limitations related to

the task we designed, their classification and how to improve our designed

VR adaptive system.

In our study, we use the VR N-Back task, which inherently features an

external shift of attention given its VR nature. This is an inherent limitation

of using VR to recruit internal attention, and it must be acknowledged

when designing experiments with a prominent visual component. To further

evaluate the reliability of this paradigm, we suggest increasing the memory-

related demands, such as increasing the amount of information held to be held

in WM, i.e., moving from a 2-Back to a 3-Back VR task. Another possibility

would be the addition of other internal components, such as episodic memory.

Regarding the visual monitoring task, it is worth noting that while we did

not explicitly verify whether participants directed their attention towards the

NPCs, the task design and instructions provided to participants were based on

prior research aimed at recruiting external attention (Cona et al., 2020; Vitali

et al., 2019; Arrabito et al., 2015). However, we acknowledge the limitation of

not implementing a manipulation check based on eye-tracking. In future work,

we plan to address this limitation by incorporating eye-tracking measures to

assess participants’ attentional focus accurately.

On the other hand, comparing the Visual Monitoring task to a VR version
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of an established external attention task, such as the visual oddball task

(Putze et al., 2016), would allow for better generalization of our results. These

limitations and challenges are common in VR research, mainly when designing

tasks that have to be ecologically situated.

Improving the generalizability of our results would support the reliability

of our classification. Although we have selected tasks that theoretically recruit

internal and external attention resources, our classifier could only discriminate

between two tasks. Future work will address the training phase on more diverse

tasks to validate our results further. Nonetheless, the high accuracy achieved

in the between-participant task classification is comparable to previous work

in AR (Vortmann et al., 2019; Vortmann and Putze, 2021) and suggests the

potential for online implementation to evaluate its performance. Specifically,

LDA is a machine learning model that allows for low computation and is

successful for online cognitive state detection (Lotte et al., 2018). A new

adaptation mechanism could be based on this classification approach, to

balance the impact of multiple features and thus increase robustness against

trial-to-trial variability.

Finally, our study demonstrated that conventional methods, such as the

Welch periodogram computed on a moving time window, can adequately detect

temporal variations in non-stationary signals. However, more advanced signal

processing techniques like wavelet analysis can further improve the detection of

temporal changes (Hillebrand et al., 2016). Thus, implementing and evaluating

wavelet analysis in future research may enhance the accuracy of attentional

state classification. It is worth noting that efficient wavelet computation

algorithms are available, which can be used in real-time applications (Khalid
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et al., 2009; Xu et al., 2009).

7. Conclusion

In this work, we presented a VR adaptive system based on EEG correlates

of internal and external attention to dynamically adjust visual complexity and

support task performance in a WM task. Visual complexity adjustments based

on alpha and theta bands allowed for modulation of task-irrelevant elements

adaptation and increased WM task performance. Furthermore, we showed

that successful classification of EEG data in a VR N-Back task based on

internal and external attention is possible. Even with simple machine learning

algorithms, the classifier could reliably predict offline the attentional state

of the participant, allowing for future implementation in real-time adaptive

systems.

8. Open Science

We encourage readers to reproduce and extend our results and analysis

methods. Our experimental setup, collected datasets, and analysis scripts are

available on the Open Science Framework2.
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