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Figure 1: Scene view of the different learning experiences in virtual reality, ranging from imitation learning (middle) to gamified

learning (right).

ABSTRACT

Dynamic balance is an essential skill for the human upright gait;
therefore, regular balance training can improve postural control
and reduce the risk of injury. Even slight variations in walking con-
ditions like height or ground conditions can significantly impact
walking performance. Virtual reality is used as a helpful tool to sim-
ulate such challenging situations. However, there is no agreement
on design strategies for balance training in virtual reality under
stressful environmental conditions such as height exposure. We
investigate how two different training strategies, imitation learning,
and gamified learning, can help dynamic balance control perfor-
mance across different stress conditions. Moreover, we evaluate the
stress response as indexed by peripheral physiological measures of
stress, perceived workload, and user experience. Both approaches
were tested against a baseline of no instructions and against each
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other. Thereby, we show that a learning-by-imitation approach im-
mediately helps dynamic balance control, decreases stress, improves
attention focus, and diminishes perceived workload. A gamified
approach can lead to users being overwhelmed by the additional
task. Finally, we discuss how our approaches could be adapted for
balance training and applied to injury rehabilitation and prevention.
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• Human-centered computing → Virtual reality; • Applied
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1 INTRODUCTION

Balance control is an essential component of many daily activi-
ties and sports. Balance has been previously described as the body
position dynamics that lessen the danger of or avoid the act of
falling [81]. However, balance control can deteriorate across the
lifespan or after injuries, leading to slow gait [54], postural insta-
bility [35], and fall risk [77]. Therefore, movement scientists in-
vestigated how to train balance control during static and dynamic
tasks in different settings, such as calm standing [46] or running
on a treadmill with constant speed [47]. In addition, new studies
on dynamic balance control suggest that static balance assessment
is insufficient to properly challenge and assess postural support for
balance control [63–65]. As a result, performance while balancing
on a beam may give further insight into how task difficulty, e.g.,
different heights, affects balance control. In this regard, Tersteeg
et al. [78] reported that different visual heights in beam-walking
influenced gait progression and that preserving the known danger
of falling led to a changed stride. With the hazards of walking along
a hanging beam or a lack of resources to design a safe and accu-
rate height exposure, developing controlled settings that monitor
dynamic balance control is critical for transferring the ability to
unpredictable real-world scenarios. Thus, adequate and targeted
training strategies deriving from learning and motivational theories
could further improve the training effect of such environments, as
with any physical or mental training [4, 18].

Research in virtual reality (VR) evaluated the effect of specific
stimuli that challenge balance control and investigated dynamic
balance reactions in controlled and realistic environments, e.g.,
the sudden motion of the visual scene or increased height expo-
sure [13, 61]. VR height exposure is comparable to its real-world
counterpart in terms of decreased balance confidence, increased
physiological arousal, and posture changes [1, 9, 16, 57]. For in-
stance, participants successfully adjust their behavior to the sur-
rounding conditions when crossing a beam at a great height by
taking smaller and slower steps [7, 39]. Researchers also showed
that height exposure activated the sympathetic autonomic nervous
system through cardiovascular [50] and electrodermal [48] mea-
sures. Based on these findings, VR exposure to high altitudes should
affect stress levels and balance control in dynamic balance tasks.

While many approaches have been proposed for VR learning,
this paper aims to determine which VR visualization method best
supports balance control training. Thus, we want to investigate the
role of design considerations in developing VR balance applications.
Therefore, we compare Gamified and Imitation approaches against
a no-support baseline in a high-fidelity VR beam-walking task. We
based our Gamified approach on the self-determination theory by
Deci and Ryan [18], suggesting that intrinsic motivation positively
influences learning performance. Social Learning by Bandura and
Walters [5] functioned as a base for our Imitation Approach, where
learning behavior works through observation. As Tersteeg et al.
[78] have shown an effect of height on balance training, we sys-
tematically studied the approaches in two conditions: Low and
High height. With this, we conducted an experiment (N=18) where
we recorded the participants’ balance performance, physiological
arousal, perceived workload, and subjective experience.

In summary, the findings of our study show that Imitation learn-
ing with a ghost avatar immediately helps the users to focus better
on the balance task and perform better in balance control. Moreover,
this is in stark contrast to the Gamified approach as it seems to
distract the users from the balance task; therefore, this approach did
not help to improve the balance control during the session. Thus,
while several approaches used gamification to motivate the user, we
conclude that in the future, imitation learning should be preferred
over gamification as it leads to a better training outcome.

2 RELATEDWORK

Below, we will summarize work on balance, how it is currently
supported in virtual reality, the impact of fear of heights, and phys-
iological correlates and their relevance to balance control.

2.1 Support of Dynamic Balance Control in VR

The vestibular, vision, and somatosensory systems control the bal-
ance in humans, i.e., the change of the center of mass (COM). When
standing on two feet (static balance), the COM generally corre-
sponds to the navel position. However, a person in motion adjusts
their posture accordingly to prevent falling. This purposeful action
of shifting the COM in the direction of movement is called dynamic
balance [52].

For virtual reality to be used as a therapeutic intervention, the
validity of the technology must first be evaluated. In this regard,
Jacobson et al. [36] conducted early research on a system for treat-
ing balance disorders. Jacobson et al. [36] intended to aid vestibular
disorders with their system. The NAVE Automatic Virtual Envi-
ronment system used here creates a stereoscopic projection. Like a
CAVE, the subject stands in a room projected from up to five sides
while following visual instructions. While this project demonstrates
an early stage of virtual environment usage, we saw a shift in recent
years away from CAVE systems to head-mounted displays (HMDs).
This shift allowed a more immersive experience influencing per-
ception and affecting balance. Ferdous et al. [25], investigated the
influence of the field of view, frame rate, and display resolution on
the physical stability of people who suffer from Multiple Sclerosis
(MS). Their experiment tested ten people with MS and another
seven people without balance impairment. The study concluded
that a reduced field of view, as well as increased latency, had a
negative impact on people with MS. Display resolution, on the
other hand, showed no relevant effects. As a result, the authors
recommend improving the field of view and latency first.

While these papers are researching the technical challenges and
their impact on human perception, other approaches focus on the
software implementation of balance and coordination applications
in a sporting context. Besides motivation, the focus here is on un-
derstanding one’s own performance [10]. There is no common
agreement on how to assess the performance of dynamic balance,
therefore a variety of tests exists [52]. Wang et al. [80] address this
problem with VRGaitAnalytics, a system for real-time visualization
of walking performance. This environment, which can serve as
additional support, allows users to receive in-situ visual feedback
on their steps while walking. Motion is visible as embodied graph-
ics, allowing users to review their performance and learn from it.
Additionally, the speed, stride length, width, and success rate over
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time can be displayed directly in the virtual scene. The measure-
ments and results were discussed among physical therapy students
with the result that this system is relevant and valuable for clinical
practice. However, even though this project shows the relevance of
feedback, they do not discuss training methodologies.

Therefore, based on Social Learning Theory (SLT) [4], Shi et al.
[69] presented a walking task for construction workers and investi-
gated the influence of reinforced learning methods. They evaluated
the walking performance of participants who had previously seen
a positive walking example (virtual character walking over a plank
and reaching the other side) vs. participants who had previously
experienced a negative walking example (virtual character walk-
ing over a plank and falling off the plank). Their study shows that
participants’ walking performance becomes more unstable and un-
controlled when they have previously observed a negative example.

Observing others’ behavior is also addressed by Cannavò et al.
[10] on the subject of coordination improvement. They developed
an interactive application in an immersive VR environment to im-
prove basketball throws. They used a motion tracking system to
record arm movements. At the same time, in VR, they showed the
subject visualization by a transparent avatar (“ghost”), performing
the correct throwing technique. While aiming for the basket, the
user received visual feedback about his throwing performance. To
evaluate the performance afterward, dynamic time warping was
used to compare the user’s attempt with an ideal throw. In addi-
tion, they used questionnaires to evaluate how much the system
has helped. Finally, the study compared performance between the
ghost method and imitating a training video that participants were
asked to watch. As a result, timing and accuracy improved more
using the ghost method compared to watching the training video.

2.2 Impact of Fear of Height

Fear is a highly sensitive research field, reaching from psychological
aspects [30] to computational analysis and therapy [41]. In their
work on treatment possibilities of Acrophobia (fear of heights) in
VR, Coelho et al. [17] state that about 1 in 20 adults suffer from
named anxiety disorder. Besides giving an overview of state-of-the-
art work in this field, the authors claim the advent of VR-assisted
Acrophobia treatments to have been as early as 1995. A first medical
application was introduced by Opdyke et al. [53], showing positive
improvements for their study participants after eight weeks. Gio-
takos et al. [29] and Levy et al. [41] conducted studies on virtual
reality exposure therapy with elderly people suffering from a fear
of heights. Participants who were undergoing the virtual reality
treatment showed a significantly decreased fear compared to the
control group. Moreover, Levy et al. [41] states that balance train-
ing can positively effect Acrophobia. Wuehr et al. [83] randomly
exposed study participants to different heights in a VR scenario,
concluding that body sway and musculoskeletal stiffening saturate
at 20 meters, while anxiety reaches a maximum at 40 meters.

2.3 Peripheral Physiological Correlates of

Balance Control in Stressful Environments

Injury prevention is a significant function of balance control [43, 62],
required to prevent postural instability when improper or inefficient
behaviors might otherwise lead to a fall. As a result, changes in

stabilized balance should be viewed as dangerous to the person and
as an emergency requiring timely action.

Similarly, the sympathetic branch of the autonomic nervous
system is associated with the fight-or-flight response in stressful
or dangerous situations [48]. Increases in heart rate (HR), vaso-
constriction, and increased electrodermal activity (EDA) are all
sympathetic reactions to imminent, impending danger. EDA, espe-
cially in its tonic component, reflecting sympathetic activation, has
been shown to predict performance in a dynamic balance task [79].
It has been proposed that sympathetic physiological arousal may
contribute to the coordinated compensatory postural reflex given
the urgent threat to safety caused by disturbances to stability [74].
Sympathetic activity is involved in visceral reflexes during upright
stance [37], impairment of balance control [12, 71] and, during
modulation of affective states during shifts in postural control [66].

Most work focused on sympathetic modulation not linked to
a specific stimulus but rather to continuous stimulation. Specifi-
cally, the most used paradigm to investigate the relationship be-
tween physiological arousal state on balance control is height ex-
posure [74], showing how stressful stimuli can evoke physiological
arousal and impact balance control. Anticipatory postural adjust-
ments and variations in postural sway are correlated with changes
in underlying physiological arousal as measured by tonic EDA [2]
while phasic responses were elicited by unexpected balance pertur-
bations [72]. Regarding electrocardiography (ECG)-derived mea-
sures, blood pressure correlated with postural performance with
increased balance challenge [11] and HR increased upon VR height
exposure [20]. However, results are conflicting as HR was not found
to be modulated by postural threats [59] or not able to discriminate
different heights in a VR environment [75].

In conclusion, physiological arousal, especially when measured
by EDA, was a reliable measure of stress induced by postural in-
stability. However, gaps remain to be clarified regarding measures
extracted from ECG during height exposure or dynamic balance
tasks. For these reasons, this study also investigate EDA and ECG
metrics as sympathetic arousal to verify and replicate results across
different training approaches and height exposures.

3 DESIGN & USER STUDY

We investigated balance performance in stressful situations and
developed two strategies to teach stable posture control and reduce
emotional arousal in the given situation, this is based on our first on
insights [21]. Our expert team consists of computer scientists, move-
ment scientists, and experienced slack-liners. In addition, we based
our strategies on a literature review, identifying imitation learning
as a successful learning method used effectively in sports [10]. We
used a ghost avatar to be imitated by the participant, intending a
shift of focus from being overwhelmed by the situation’s complexity
that must be solved to observing and imitating the avatar to do the
balancing task. We based the ghost’s movements on pre-recordings
conducted by a slack-line expert to ensure proper balancing, focus-
ing primarily on an upright posture and a low COM. Gamification
is a concept evolving around motivation by utilizing game elements
in non-game settings [19]. Our second strategy differs from the
imitation strategy by the shift of focus being created not through
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directing the user but by playful distraction induced by game ele-
ments. We introduced a second gender-neutral avatar representing
the user itself to increase the presence and support the user’s visual
perception of himself in VR. Especially the visual perception of the
feet is an essential factor in performing accurate movements [40].

We used awithin-participants experimental design to understand
how to support balance training. The first independent variables
wereMethodwith three levels: No Instructions, Imitation, or Gam-
ified which has shown to support VR training in other domains.
The second independent variable is Height with levels Low and
High; this variable is directly inspired by Tersteeg et al. [78]. The
order of training methods was Latin square-randomized. In the
study, we asked participants to balance over a beam that spans two
islands rendered in a high-fidelity VR environment, see Figure 2.

In the No instructions condition, it was left to participants how to
control their balance or walk over the beam. This served as a control
condition. In the Imitation condition, we instructed participants
to imitate the actions of an avatar performing the balance task
in front of the user. Hence, instructions for posture correction
were communicated explicitly. Lastly, in the Gamified condition,
we instructed participants to collect items directly placed over the
beam. Half of them could only be collected with their heads, the
other half only with their pelvises. Hence, they implicitly received
instructions on posture correction. The intended focus was on
collecting one head-pelvis-pair of collectibles after the other. To
investigate the influence of height exposure on balance control, we
implemented two different heights (Height). Wuehr et al. [84]
reported that physiological reactions to height exposure in VR, like
sway and stiffening, are highest at a depth of 20 meters. Since our
goal was to create a believable feeling of height, not fear, we chose
20 meters for the high height condition.

3.1 Apparatus

In accordance to Schulz et al. [68] using props in VR helps increase
the realism and anxiety. Therefore, we asked participants to control
their dynamic balance on a six meters long six-cm-wide wooden
beam placed on gym tiles in an open space of a gym, Figure 3. They

Figure 2: An aerial shot of the VR environment, presenting

the two islands with the connecting beam.

Figure 3: Study apparatus with trigger zones overlay. A: Start

Zone, B: End Zone, C: Fall Zones, D: Step Zone; E: Safety Har-

ness, F: Rope Slide; Orange dots: 6 on-body position trackers

(head, hands, feet, waist), blue dots: 2 beam position trackers

used for scene matching. Each trigger zone was activated or

deactivated by one of the feet trackers entering or leaving it.

were wearing a safety harness fixed to a rope slide attached to a
4-point truss cage surrounding the setup.

We placed participants in a VR scene comprised of two remote
islands amidst high seas. We placed a timber that spans between the
two islands’ cliffs to create the experience of the feeling of height.
We designed the virtual environment using Unity 3D, as headset we
used a Valve Index headset connected to a Windows 10 PC (Intel
Core i7-9700 CPU@ 3.00GHz, 32GB RAM).We used the Valve Index
Controllers and HTC Vive Trackers for position tracking of the
user’s head, hands, pelvis, and feet. A virtual avatar was mapped
to the user’s body using FinalIK1 using a gender-neutral to reduce
biases. We further supported the users’ feeling of embodiment and
positively affecting immersion [28] using a virtual representation
of the user’s body. To reduce the risk of injury, in case of a detected
fall i. e., a tracker entering Zone C (see Figure 3), everything except
the beam faded to black, and a virtual floor was shown at the height
of the physical floor.

1https://assetstore.unity.com/packages/tools/animation/final-ik-14290

https://assetstore.unity.com/packages/tools/animation/final-ik-14290
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Figure 4: Body metrics for measuring balance performance.

Solid orange dots represent the key points of a body that

trackers measure.H ,W, and 𝜃 are our considered oscillation

balance metrics regarding head, waist, and hands.

We acquired the users’ EDA data using a BITalino biomedi-
cal toolkit [32] via Bluetooth connection with a sampling rate of
1000Hz, following the guidelines by Babaei et al. [3]. The acquisi-
tion setup featured two Ag/AgCl electrodes (5 mm surface diameter)
attached to the distal phalanx of the middle and index fingers of
the participant’s non-dominant hand. Moreover, we recorded the
ECG data with a Polar H10 (Polar, Finland) placed over the xiphoid
process of the sternum below the chest muscles. Before data collec-
tion, we moistened the ECG electrodes with lukewarm water. The
sampling rate is 130Hz. We streamed the raw ECG and EDA data
using the Lab Streaming Layer2 to the acquisition PC.

3.2 Procedure

After welcoming participants, we inform them about the study’s
voluntariness, duration, risks, purpose, compensation, data pro-
cessing, and publishing of results. Then we asked them to sign
an informed consent form. Next, they entered their demographic
information into a web form and equipped the safety harness. As
the next step, we invited them to walk forth and back on the beam
to get an initial impression and test the safety system. After that,
we introduced them to the VR headset while we attached electrodes,
chest band, controllers, and trackers: we asked them to hold the
controllers in their hands, and we attached trackers to their rear
waistband (around the location of the coccyx) and at the arch of
each foot using velcro fasteners, see Figure 3. Then, we calibrated
the virtual avatar to the participant, i.e., the rotation and position
of the feet and pelvis and general body height. During the setup
procedure, the participants had no visual input through the headset.

A trial consisted of a combination of the independent variables
Height and Method. We equally balanced the order of Height
participants that the participant experiences first. Within Height,
the order of training methods was Latin square-balanced. Each trial
consisted of four “laps”, i. e., participants had to walk the beam
forth and back twice. Per trail they walked 24 meters. At the end of
the beam, they had to step off and back on it to start the next lap.
2https://github.com/labstreaminglayer/

After each trial, subjects were to answer the Physical Activity En-
joyment Scale (PACES) [38] and rawNASA-TLX questionnaires [34].
After completing each Height, we asked them to fill in an Igroup
Presence Questionnaire (IPQ) [67]. The institutional ethics commit-
tee approved the study procedure.

3.3 Participants

We recruited 18 participants (age range 21-66, 𝑀 = 31.89, 𝑆𝐷 =

13.92; 7 female, 11 male, none diverse) using convenience sampling.
Inclusion criteria required not to have Acrophobia (i.e., fear of
height). Moreover, we followed the guidelines by Babaei et al. [3];
thus, no participant practiced intense physical activity, consumed
coffee or substances containing caffeine or nicotine, or smoked in
the 3 hours before the study. None of the participants reported neu-
rological, psychological, or psychiatric symptoms. All participants
received monetary compensation of 10 EUR upon participation.
However, due to technical issues, we obtained the full data only for
15 participants (age range 21-66,𝑀 = 33.60, 𝑆𝐷 = 14.71; 6 female,
9 male). We will present our results based on these 15 participants.

3.4 Measurements & Data Preprocessing

We evaluated different methods for dynamic balance control train-
ing across two different heights of exposure. The dependent vari-
ables were: (I) balance performance, namely time spent on the beam,
number of falls, and oscillations of significant body key-points
(waist, head, and hands), (II) physiological arousal as measured
by EDA in the form of SCL and non-specific skin conductance re-
sponses (nsSCRs) and ECG by HR, and (III) perceived workload (raw
NASA-TLX) [34], sense of presence (IPQ) [67], and PACES [38].

3.4.1 Electrodermal Activity. We processed the raw EDA data using
the Neurokit Python Toolbox [45]. First, we used a 3Hz, high-pass,
fourth-order Butterworth filter to remove high-frequency noise.
Second, we decomposed the signal into its tonic and phasic com-
ponents by non-negative deconvolution analysis [6]. Third, we
derived two measures: 1) the average tonic SCL and 2) the average
amplitude of nsSCRs. Note that SCRs were defined as peaks from
the decomposed signal using a threshold value of .05𝜇𝑆 [26].

3.4.2 Electrocardiogram. We evaluated ECG activity in the time
domain, focusing on HR. As with EDA, the ECG signal was also pro-
cessed by Neurokit Python Toolbox [45]. We first filtered the ECG
signal by the Finite Impulse Response (FIR) band-pass filter (3–45
Hz, 3rd order), and then segmented by Hamilton’s method [33] to
identify the QRS complexes and extract mean HR.

3.4.3 Balance Metrics. According to the seminal review by Paillard
[55], postural balance characterizes the ability to maintain a partic-
ular segmental organization without falling. Thus, we evaluated the
postural balance based on body segment oscillations obtained from
six on-body position trackers (placed on the head, hands, feet, and
waist). Moreover, we assumed that quicker successful completion of
the walking task reflects a superior postural balance performance.
Therefore, we consider five metrics to represent the overall balance
performance: 1) the total time to complete the task (T ); 2) the num-
ber of falls (F ); 3) the head oscillation (H); 4) the waist oscillation
(W); 5) the hand balance oscillation (𝜃 ). We present a visualization
of body-related metrics in Figure 4.

https://github.com/labstreaminglayer/
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Table 1: An overview of all mean and standard deviation in physiological measures and questionnaire measures. Highlighted

median values are the ones that ART tests show significant main effects, and highlighted mean values are the ones that two-way

parametric ANOVA shows significant main effects.

Method Height

No Instructions Imitation Gamified High Low

Mean Median SD Mean Median SD Mean Median SD Mean Median SD Mean Median SD

HR 100.85 100.18 16.05 99.72 99.46 15.85 102.92 103.27 17.12 102.29 101.83 17.33 100.03 100.53 15.29

SCL 8.09 7.98 3.49 7.76 7.44 3.36 7.97 8.14 3.31 8.41 8.50 3.21 7.47 6.99 3.49
nsSCRs 0.79 0.70 0.53 0.61 0.55 0.42 0.66 0.55 0.40 0.66 0.51 0.42 0.77 0.68 0.48

NASA 43.11 40.00 29.05 45.28 40.00 27.89 53.39 55.00 26.94 49.96 55.00 28.14 44.56 40.00 28.19
PACES 5.59 6.00 1.14 5.41 6.00 1.22 5.09 5.00 1.26 5.46 6.00 1.24 5.26 5.00 1.20

4 RESULTS

We present quantitative findings retrieved from our objective mea-
sures and subjective questionnaires. We consider four laps per
participant as four repeated measurements to leverage multi-level
mixed models analysis (i.e., participant as random effects). Then, de-
pending on the normality assertion using the Shapiro-Wilk test [60],
we use two-way ANOVAs for parametric analysis and use ART
ANOVAs [82] for the non-parametric data. Furthermore, for post-
hoc comparisons, we use either t-test or Wilcoxon tests depending
on the normality if no interaction was found; otherwise, we use
ART-C test [23] to report our results.

4.1 Electrocardiogram

Since the normality assumption is violated (𝑊 = .98, 𝑝 < .001), we
conducted ART ANOVA which revealed that HR is statistically sig-
nificantly influenced by Method (𝐹2,340 = 5.02, 𝑝 = .007, 𝜔2 = .02),
Height as well (𝐹1,340 = .5.53, 𝑝 = .019, 𝜔2 = .01), but no in-
teraction effect (𝐹2,340 = .75, 𝑝 = .47, 𝜔2 = .001), see the upper
left in Figure 5. Descriptive statistics are shown in Table 1. We
performed the Wilcoxon test on Method. We could not show
any pairwise statistical significance: No Instructions vs. Gamified
(𝑊 = 6715.00, 𝑝 = .368; 𝑟 = −.07,𝐶𝐼95% = [−.21, .08]), Gamified
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Figure 5: Results from HR, SCL and nsSCRs. The left figure

reports the HR measure: HR is significantly influenced by

Method andHeight. The middle and right figures report

the average tonic and amplitude measures in EDA: Method

influence tonic SCL significantly, and both Method and

Height influence nsSCRs amplitude significantly.

vs. Imitation (𝑊 = 8063.00, 𝑝 = .109; 𝑟 = .12,𝐶𝐼95% = [−.03, .26]),
and No Instructions and Imitation (𝑊 = 7549.00, 𝑝 = .517; 𝑟 =

.05,𝐶𝐼95% = [−.10, .19]).

4.2 Electrodermal Activity

4.2.1 Skin Conductance Level (SCL). Due to a Shapiro-Wilk tested
normality assumption violation (𝑊 = .99, 𝑝 = .007), an ART
ANOVA showed that average tonic SCL is significantly influenced
by Height (𝐹1,340 = 56.08, 𝑝 =< .001, 𝜔2 = .14) but not byMethod
(𝐹2,340 = 2.63, 𝑝 = .073, 𝜔2 = .009). Moreover, the ANOVA could not
show a significant interaction effect (𝐹2,340 = 1.05, 𝑝 = .350, 𝜔2 =

.003). Descriptive statistics are shown in Table 1.

4.2.2 Non-specific Skin Conductance Responses (nsSCRs). The av-
erage amplitude measure showed normality assumption violation
(𝑊 = .92, 𝑝 < .001). We performed an ART ANOVA, which re-
vealed that the average amplitude is influenced by bothMethod
(𝐹2,340 = 8.99, 𝑝 < .001, 𝜔2 = .04) and Height (𝐹1,340 = 25.58, 𝑝 <

.001, 𝜔2 = .07) significantly, and no interaction effect was found
(𝐹2,340 = .82, 𝑝 = .441, 𝜔2 = −.001). We performed a Wilcoxon test
on Method. We could show statistical significance between No
Instructions vs. Imitation (𝑊 = 8701.00, 𝑝 = .005; 𝑟 = .21,𝐶𝐼95% =

[.07, .34]), but could not show statistical significance for other pairs:
No Instructions vs.Gamified (𝑊 = 8140.00, 𝑝 = .081; 𝑟 = .13,𝐶𝐼95% =

[−.02, .27]), and Gamified and Imitation (𝑊 = 7767.00, 𝑝 = .292; 𝑟 =
.08,𝐶𝐼95% = [−.07, .22]). Descriptive statistics are shown in Table 1.
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Table 2: An overview of all analyzed results using two-way ANOVAs. Significant results are highlighted in bold font.

Method Height Method × Height

𝑓 𝑑 𝑓 𝐹 𝑝 𝜔2/𝜂2 𝑓 𝑑 𝑓 𝐹 𝑝 𝜔2/𝜂2 𝑓 𝑑 𝑓 𝐹 𝑝 𝜔2/𝜂2

HR 2 340 5.02 .007 .020 1 340 5.53 .019 .010 2 340 0.75 .471 .001

SCL 2 340 2.63 .073 .009 1 340 56.08 <.001 .140 2 340 1.05 .350 .003
nsSCRs 2 340 8.99 <.001 .040 1 340 25.58 <.001 .070 2 340 0.82 .441 −.001
𝜇T 2 340 89.43 <.001 .340 1 340 6.14 .013 .010 2 340 0.38 .682 −.004
𝜇H 2 340 1.35 .260 .002 1 340 0.05 .817 −.002 2 340 3.72 .025 .020
𝜎H 2 340 6.55 .002 .030 1 340 0.33 .567 −.002 2 340 1.92 .148 .005
𝜇W 2 340 1.72 .180 .004 1 340 0.00 .963 −.003 2 340 3.89 .021 .020
𝜎W 2 340 6.70 .001 .030 1 340 0.31 .576 −.002 2 340 2.21 .111 .007
𝜇𝜃 2 340 107.59 <.001 .380 1 340 8.33 .004 .020 2 340 2.34 .097 .008
𝜎𝜃 2 340 16.47 <.001 .080 1 340 0.38 .539 −.002 2 340 1.49 .226 .003
𝜇F 2 340 20.93 <.001 .100 1 340 55.32 <.001 .140 2 340 11.23 <.001 .060

NASA 2 28 9.34 <.001 .400 1 14 4.68 .048 .250 2 28 0.48 .621 .030
PACES 2 28 4.81 .016 .260 1 14 1.69 .215 .110 2 28 0.46 .637 .030

4.3 Balance Performance

We conducted an ART ANOVA, as the Shapiro-Wilk normality test
showed that the data are not normally distributed (𝑊 = .89, 𝑝 <

.001). This analysis revealed that the total time spend 𝜇T is signif-
icantly influenced by Method (𝐹2,340 = 89.43, 𝑝 < .001, 𝜔2 = .34)
and by Height (𝐹1,340 = 6.14, 𝑝 = .013, 𝜔2 = .01). Moreover, no
interaction effect was found (𝐹2,340 = .38, 𝑝 = .682, 𝜔2 = −.004).

Moreover, Wilcoxon tests on Method could show statistical
significance between all pairs: No Instructions vs. Gamified (𝑊 =

2378.00, 𝑝 < .001; 𝑟 = −.67,𝐶𝐼95% = [−.74,−.58]), Gamified vs.
Imitation (𝑊 = 10219.00, 𝑝 < .001; 𝑟 = .42,𝐶𝐼95% = [.29, .53]),
and No Instructions and Imitation (𝑊 = 4590.50, 𝑝 < .001; 𝑟 =

−.36,𝐶𝐼95% = [−.48,−.23]).
Similarly, we further tested the following metrics: 1) 𝜇F : mean of

number of falls; 2) 𝜇H : mean ofH ; 3) 𝜎H : standard deviation ofH ,
4) 𝜇W : mean ofW, 5) 𝜎W : standard deviation ofW, 6) 𝜇𝜃 : mean of
𝜃 , 7) 𝜎𝜃 : standard deviation of 𝜃 . For all these metrics, Shapiro-Wilk
normality tests showed that all metrics are not normally distributed
(all 𝑝 < .001). Therefore, we employed ART ANOVA and found that
none of H and W metrics are significantly influenced by Height.
On the other side, we report significant main effects forMethod
on 𝜇𝜃 , 𝜎𝜃 , 𝜇F , 𝜇T , 𝜎H , and 𝜎W . For a more complete overview of
all ART-ANOVA results, see Table 2.

More specifically, we show the post-hoc pairwise significance
by Figure 8 using either t- or Wilcoxon test, depending on the
normality. For visualizations, Figure 6 shows the comparison of the
oscillation of head, waist, and hand balance over time, and Table 1
shows the distributions of metrics that are influenced by Method
significantly.

4.4 Questionnaires

4.4.1 Perceived Workload. A Shapiro-Wilk test showed that the
reported raw NASA-TLX meets the normality assumption (𝑊 =

.97, 𝑝 = .069). Thus, we performed the two-way ANOVA. The
main effect of Method is statistically significant (𝐹2,28 = 9.34, 𝑝 <

.001;𝜂2 = .40). The main effect of Height is statistically significant
and small (𝐹1,14 = 4.68, 𝑝 = .048;𝜂2 = .25), see Figure 7. The
interaction effect between Method and Height is statistically not
significant and very small (𝐹2,28 = .48, 𝑝 = .621;𝜂2 = .03). The post-
hoc Wilcoxon tests on Method could show statistical significance
between No Instructions vs. Gamified (𝑊 = 257.50, 𝑝 = .005; 𝑟 =

−.43,𝐶𝐼95% = [−.43,−.16]), as well as Gamified vs. Imitation (𝑊 =

621.50, 𝑝 = .011; 𝑟 = .38,𝐶𝐼95% = [.11, .60]), but not significant
between No Instructions and Imitation (𝑊 = 400.00, 𝑝 = .464; 𝑟 =

−.11,𝐶𝐼95% = [−.39, .18]).

4.4.2 Physical Activity Enjoyment Scale. Since PACES ratings are
normally distributed (𝑊 = .97, 𝑝 = .07), we performed a two-way
ANOVA. We found statistically significant differences in Method
(𝐹2,28 = 4.81, 𝑝 = .016;𝜂2 = .26) but not Height (𝐹1,14 = 1.69, 𝑝 =

.215;𝜂2 = .11), and there is no interaction effect (𝐹2,28 = .46, 𝑝 =

.637;𝜂2 = .03), see Figure 7. Moreover, Wilcoxon tests on Method
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could show statistical significance between No Instructions vs. Gam-
ified (𝑊 = 613.50, 𝑝 = .016; 𝑟 = .36,𝐶𝐼95% = [.09, .59]), but not
the other pairs: Gamified vs. Imitation (𝑊 = 332.00, 𝑝 = .082; 𝑟 =

−.26,𝐶𝐼95% = [−.51, .03]), and No Instructions and Imitation (𝑊 =

502.00, 𝑝 = .446; 𝑟 = .12,𝐶𝐼95% = [−.18, .39]).

4.4.3 Presence. Because our collected IPQ ratings are normally
distributed (𝑊 = .95, 𝑝 = .17), we used a t-test and were unable to
prove a significant difference between High and Low Height (𝑡 =
.12, 𝑝 = .91).

5 DISCUSSION

In this section, we combine the quantitative results presented above
with our participant’s subjective comments to discuss and reflect
on what implications we think these observations have.

5.1 Physiological Measures

Results from both ECG and EDA suggest that physiological arousal
is mainly affected by VR height exposure, accompanied by alter-
ations in dynamic balance control. We found that HR increased
when users were exposed to virtual high heights. This result repli-
cates previous work on stress [8, 56], adding credibility to HR’s
capacity to discriminate between different height exposure [20, 48].
Furthermore, it indicates that our photorealistic implementation
evoked a realistic height perception and related stress response.
Specifically, increased visual fidelity appears to be a relevant factor
when designing VR environments [31] that involve height expo-
sure both for psychological VR therapy [20] and assessment of
fall-prevention strategies [39, 75]. Moreover, increased height ex-
posure requires dynamic balance adjustments, which is reflected
by sympathetic variations [27, 74] and confirmed by our results.

Together with HR, height exposure similarly affected the tonic
component of EDA. This result depicts a sympathetic reaction to the
evoked postural instability [74]. From a functional perspective, an
autonomic reactivity indexed by HR and SCL should facilitate the
corrective dynamic balance response [70, 73]. VR height exposure
increased the stress level, interfering with the need to promptly
react to the postural perturbation, as shown by SCL [42, 44]. Our
results confirm the results of Meehan et al. [49] and Diemer et al.

[20], particularly the effect of VR height exposure on physiological
arousal. This interpretation is in line with our finding that nsSCRs
showed increased amplitude in the No Instructions condition. When
no instructions were given, participants invested more effort in
controlling their dynamic balance. Lastly, we report an increased
nsSCRs amplitude in the low height condition. Even though nsSCRs
reflect tonic activity, SCRs were less sensitive to height exposure
[84] and attenuated when postural perturbations are generated
by external factors [72]. Furthermore, given the high movement
required by the task, artifacts like participants’ motion can be con-
founded with nsSCRs, and SCRs [58].

Our results also contribute to the physiological computing per-
spective [24] for exergaming [51]. Future work should focus on
designing physiologically-based exergames not only in the area
of motivation [76] or user experience [14], with the goal to adapt
displayed information [15], e.g., heights for dynamic balance adjust-
ments. Our work supports the overarching relationship between
autonomic activity for dynamic balance control and height expo-
sure in a VR environment.

5.2 Balance Measures

As the most striking result for the motion analysis, it turns out
that the evaluation of the gamified method provides a significant
difference compared to the baseline (No Instructions). This difference
exists in all measured areas; time, counted falls, and oscillation of
head, hips, and hands. Similarly, there is a significant increase in
time and swaying of the hands compared to imitation learning.
These results suggest that the gamified method was experienced as
the most complex regardless of water height. The intended effect
of positively influencing the body posture by gathering collectibles
could not be realized within one training session only. However,
observed over several sessions, the effect of a more challenging
task could lead to better postural balance control adaptation [55].
Although correlated movements of the head and hips were detected,
balance control became more difficult with the additional effort,
which did not lead to a more stable balance. It could be argued that
the hands should have been used for collecting game elements as
well, but that would again have increased the complexity of the
task. Since the hands were not assigned to the task, the movement
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of the hands shows an above-average sway that does not contribute
to stability.

In contrast, imitation learning shows a positive effect on hand
sway. The technique led to a significantly lower sway of the hands
compared to the baseline. From this, we can conclude that using
the hands in a guided way gives a significant advantage in dynamic
balancing. Furthermore, regarding the imitation technique, only
the measured deviations in time were significantly different from
the baseline. In this case, the time was affected by the task and,
therefore, by the avatar’s speed.

5.3 Questionnaire Feedback

As supported by the significantly higher perceived workload as-
sessed by the raw NASA-TLX questionnaires [34], the gamified
approach was the most demanding for participants. The error rate
in this scenario was significantly higher, which could be visually
confirmed by the study investigators. The additional collection
task added workload to the basic balance control task, which over-
whelmed users andmade them rate this method the highest in work-
load. Furthermore, additional and controlled head movement was
necessary to collect items that were potentially outside their field
of view, which also explains the high value of 𝜎H . This prolonged
the sessions and further contributed to tiring the participants. The
overextension is also reflected in the lowest PACES rating for the
gamified approach. In addition to that, four participants felt dis-
tracted from the height and the surroundings by the additional
task, while three reported that the collectibles made the task more
difficult since they blocked their view on the beam.

In contrast, imitation did not seem to overwhelm participants
compared to the no-instruction method (𝑝 = .464). This could
have several reasons: firstly, imitating is a natural learning strategy
humans apply from an early age. Secondly, the “additional task” of
having to imitate an avatar had the same purpose as the primary
task of crossing the gorge, in contrast to the extraneous task of
collecting floating items. Hence, the proximity of the secondary to
the primary task may have led to higher performance at a lower
perceived effort.

Despite significantly higher measures in HR and SCL, users
rated high height and low height conditions indifferently in terms
of enjoyment and generally reported the experience to be pleasant
and enjoyable.

6 LIMITATIONS & FUTUREWORK

During the study, we were liable for the participants’ physical in-
tegrity. Hence, a lot of time, money and effort was put into safety
mechanisms. The harness itself could have had an effect on user per-
formance: the procedure and feeling of putting it on could have lim-
ited the amount of immersion into the scene and led to participants
feeling more careless about falling. Furthermore, the expenditure
of installing such mechanisms at home would probably defy the
"easily-train-at-home" premise one might have. In a private context,
however, users would only be responsible for themselves and for
playing in a safe environment. However, the study of suitable safety
equipment for exertion games in VR and its effect on immersion is
not in the scope of this paper.

For exact movement tracking, three additional VR trackers were
used. For private use, this would mean higher acquisition cost and
less ease of use. However, there are cheaper and more convenient
camera- or marker-based solutions in the market that provide com-
parable precision, e.g., Microsoft XBox, OptiTrack, Xsens Motion-
Capture. Future work, therefore, can focus on evaluating different
tracking systems for VR balance training, keeping in mind the speed
and accuracy of tracking.

In addition, future studies should focus on multi-session and
long-term observation to further investigate the effects of different
training designs. For example, our study results indicate that the
gamified approach seems to be an undesired design decision. How-
ever, it should be investigated over several weeks since training
improvement usually evolves over time. It could be the right deci-
sion for training experts who benefit from the added task load. It
increases the challenge while focus maintains on the balancing task.
Interestingly, height did not significantly affect the head and hip
movements but had a small significant effect on perceived work-
load. This shows that the learning method is essential in developing
training approaches.

7 CONCLUSION

This paper presents a virtual reality environment to train to bal-
ance at varying heights. Hereby, we compared the benefits of two
training approaches. Based on the recorded data consisting of EDA,
ECG, movement data, and questionnaires, we concluded that im-
itation learning positively affects the training of balance ability
while walking in stressful environments. Furthermore, based on
the physiological data, we could also confirm existing studies on
the influence of height [20, 49]. The observed positive effect of the
imitation training variant forms a basis for future work and could
be further evaluated in long-term training sessions.

In contrast to the imitation approach, execution with the gami-
fied approach was significantly worse than the baseline in almost
all cases. In addition, no significantly positive training results could
be obtained, in contrast to imitation learning. The data shows that
participants perceived the task as a burden and not as support. As
previously discussed, how the task is perceived can be influenced
by the context where it is used, e.g., in therapy or as expert training.
Therefore, long-term training sessions should consider the context
further to investigate the change in perceived difficulty during task
performance.

8 OPEN SCIENCE

We encourage readers to reproduce and extend our results. Our
collected datasets, simulated VR scenarios, and analysis scripts are
open-sourced and made available on GitHub3 and the DaRUS Open
Data platform4[22].
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