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Abstract

Future VR environments envision adaptive and personalized in-
teractions. To this aim, attention detection in VR settings would
allow for diverse applications and improved usability. However,
attention-aware VR systems based on EEG data suffer from long
training periods, hindering generalizability and widespread adop-
tion. This work addresses the challenge of person-independent,
training-free VR BCI classifying internal and external attention in
VR. We compared the performance of four classifiers on an EEG
dataset (N=24) featuring internal and external attention labeled
classes. With the goal of online adaptation, we tested overall ac-
curacy, different window lengths of the data, and training split to
optimize the trade-off between window length and classification
accuracy. Our results show that models using a complete EEG band
combination consistently achieve the highest accuracy, with Linear
Discriminant Analysis particularly benefiting from full-band data.
The window length impacts most models’ performance with short
windows. LDA achieved optimal accuracy around 6.3 seconds, SVM
and NN around 6.5 and 6 seconds, respectively, and RF reached
stability at 6 seconds. Lastly, increasing training data ratios im-
proved accuracy gains consistently across models. We discuss the
potential of machine learning to model EEG correlates of internal
and external attention as online inputs for adaptive VR systems.

CCS Concepts

• Human-centered computing→ Human computer interac-

tion (HCI).
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1 Introduction

Virtual Reality (VR) technology has witnessed significant advance-
ments in recent years, with its applications through various do-
mains, including gaming [19], healthcare [45], and training [20].
As VR evolves, the focus has shifted towards developing adaptive
systems intelligently adapting to users’ states in real-time [3]. This
paradigm shift is driven by the recognition that personalized and
dynamically tailored experiences are crucial to enabling more di-
verse VR interactions [14]. Adaptive interaction has become central
to designing engaging VR experiences.

To enable adaptive VR systems, the emerging physiological com-
puting perspective provides a promising approach [23]. Physiolog-
ical computing leverages the understanding that human physio-
logical signals can serve as a valuable source of information for
interaction and adaptation. Using physiological data as input for
interaction, we can gain insights into users’ cognitive and affective
states, tailoring the VR experience to their current goals.

When engaged in VR interactions, we might be exposed to a
wide range of stimuli, varying in intensity and frequency, requiring
externally-directed attention and, at the same time, be engaged in
productive or cognitive tasks that might require memory recall [56],
and mental arithmetic [1], i.e., internally-directed attention. The
relevance of distinguishing between internal and external attention
became evident across different VR tasks [42, 50, 53]. Consequently,
levels of attention can fluctuate, influenced by intrinsic and extrin-
sic factors and events in the VR environment that could disrupt
such processes. Whether internal or external attention states can
be preferable depending on the VR interaction, attentional mech-
anisms play a central role in directing focus toward relevant in-
formation while suppressing what is perceived as irrelevant. The
challenge lies in effectively suppressing sensory input, particularly
when it becomes more perceptually salient [24]. The controlled
nature of VR enables the adaptation of digital content, offering the
flexibility to manipulate and control the appearance of potentially
distracting or task-irrelevant information. This adaptability allows
for the display of virtual content that can effectively respond to
the user’s attentional state and align with the objectives of the
application. Conversely, if we display relevant information in the
VR environment, but users direct their attention internally, i.e., in
a mind-wandering state, adaptation might increase the saliency of
external stimuli to aid users in maintaining their concentration on
the task.

In this work, we evaluate machine learning-based approaches for
the implicit classification of internal and external attention states
based on electroencephalographic (EEG) features derived from the
dataset of Chiossi et al. [11]. Verbalizing or recalling the attentional
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state directly from participants can be challenging, as it may in-
volve subconscious or forgotten aspects. Thus, we investigated the
feasibility of internal and external attention implicit detection to
address this limitation.

Secondly, we target the overall problem of model generalizability
for neuroadaptive technology [35]. In neuroadaptive VR applica-
tions, achieving high classification accuracy often involves training
the classifier on data specific to each individual, resulting in per-
sonalized models that are hard to generalize across participants.
The training process typically requires explicit labeling of recorded
data in time-consuming sessions. However, if the data could be
person-independent, it would remove the need for extensive data
collection and enable the system to be used without prolonged
calibration. By making the system person-independent, it would be
possible to pre-train the classifier using data from multiple users.
This approach would increase the size of the training dataset, re-
duce bias, and mitigate the risk of overfitting on limited training
samples. Ultimately, person independence offers the potential for
more efficient and widely applicable neuroadaptive VR systems.

With those goals in mind, we systematically evaluated different
model accuracy over different EEG features, window segmentation,
and applicability of person-independent classification for future
online use. Based on previous work in Augmented Reality (AR) [62],
we compared a Linear Discriminant Analysis (LDA) model, and Sup-
port Vector Machine (SVM) to non-linear algorithms, i.e., Random
Forest Classifier and a simple Neural Net.

We make the following contributions: we conducted a system-
atic analysis to identify the optimal feature set (I) for classifying
internal and external attention states in VR environments. Second,
we investigated the influence of time window segmentation (II) on
classification performance. Furthermore, we identified optimal time
windows for attention detection based on each model (III). Four, we
showed the different impacts of model parameters on accuracy and
provided guidelines for their selection (IV). Lastly, we make our
analysis approach and preprocessed datasets openly available (V) .

2 Related Work

Here, we review the relevance of internal and external attention in
VR settings and summarize previous work in internal and external
attention detection based on EEG features for adaptive interaction.

2.1 Internal and External Attention in Virtual

Reality

When immersed in VR settings, users need to allocate their attention
to both external stimuli and internal mental processes, as described
in Chun et al.’s taxonomy [15], which differentiates between exter-
nal attention directed towards the VR environment and internal
attention focused on cognitive tasks and mental representations.

External attention encompasses allocating attention towards ex-
ternal stimuli, which can occur through top-down or bottom-up
processes. Task demands and goal-oriented features drive top-down
attentional control, whereas bottom-up attentional capture occurs
when attention is involuntarily drawn to objects or events [26, 54].
On the other hand, internal attention involves processing and up-
dating internal representations of information, including working
and prospective memory or mental calculation [16, 49]. Internal

attention is often guided by top-down processes such as goals or
motivation.

External and internal attention have been investigated in VR
research to study immersion and engagement [10, 55]. For instance,
Magosso et al. [42] compared the attentional competition between
external and internal allocation when engaged in a mental arith-
metic task (internal attention) in an immersive VR environment
(external attention). A realistic VR environment requires more ex-
ternal attention resources like those required when reading. This
finding aligned with Ricci et al. [50], showing that exposure to a VR
environment increased external attention compared to a relaxation
state that recruits internal attention. Similarly, Dey et al. [18] found
increased EEG alpha oscillations in parietal sites associated with
external attention and a higher sense of presence in VR.

Attentional states also play a significant role in determining
users’ engagement with a specific task. For example, Katahira et
al. [30] studied different flow experiences during an internal atten-
tion task (a mental arithmetic task) reporting that EEG correlates
of external and internal attention could distinguish between states
of overload, boredom, and flow. Lim et al. [37] compared internal
attention and immersion in desktop and VR settings, where beta
and alpha frequencies could discriminate between the two states.

Considering the relationship between internal and external at-
tentional states and the VR experience, attention detection in VR
would allow for enlarging VR scenarios’ interaction space and user
experience. By leveraging the insights gained from studying exter-
nal and internal attention, researchers can develop adaptive systems
to detect users’ attentional states in VR. Next, we review existing
approaches for attention detection in VR.

2.2 Attention Detection in Augmented and

Virtual Reality

Attention detection in VR environments is crucial for improving
user engagement and optimizing content, visualizations or interac-
tion [14]. Thus, several studies explored the feasibility of internal
and external attention detection in AR and VR settings, focusing on
different adaptive strategies and feature sets based on eye-tracking
and EEG.

In AR, Vortmann et al. demonstrated the effectiveness of simple
machine learning techniques, particularly LDA, in distinguishing
between internal and external attention states, pointing toward real-
time attention assessment in AR applications [60]. They extended
this work by integrating the LDAmodel into an attention-aware lan-
guage translation application for AR mobile devices, confirming the
practicality of attention detection in real-world settings [63]. Fur-
thermore, Vortmann and Putze developed an attention-aware BCI
using Steady-State Visually Evoked Potential (SSVEP) to reduce dis-
tractions, enhancing system usability through a nearest-neighbour
classification [61]. These studies collectively highlight the potential
for utilizing attention detection techniques to enhance user expe-
rience and mitigate distractions in AR environments employing
machine learning approaches.

Instead, in VR settings, the most common approach employed
rule-based adaptation. Ewing et al. [22] adjusted game difficulty
by the higher-level goal of sustaining attention and motivation
to the game-adapted sensory and challenge immersion in a VR
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game. Their system architecture was based on variation threshold
from baseline on EEG features over a 4s time window. Similarly,
but with a focus on optimizing internal attention states, Chiossi
et al. [11] adapted the visual complexity of visual distractors while
participants were engaged in a Working Memory task, ultimately
resulting in improved behavioral performance.

Souza and Naves [55] reviewed recent literature for VR attention
detection via EEG features. First, they emphasized the importance of
personalized machine learning models for attention detection. Sec-
ond, they highlighted the need for high-resolution EEG techniques
to capture brain connections and information about immersion,
attention, and cognitive load. Various approaches were employed
to study attention allocation under different immersion levels and
cognitive loads; however, few examples of online applications of
machine learning algorithms were investigated for online adapta-
tion in VR environments. Thus, optimizing user interfaces based
on attentional states has been primarily explored in AR. However,
real-time assessment and adaptation based on users’ attentional
state still need to be improved in VR paradigms.

2.3 Research Gap

This study focuses on detecting internally and externally directed
attention in VR. Previous research has explored the EEG mecha-
nisms underlying internal and external attention in AR and VR.
Still, there is a lack of studies investigating person-independent
Brain-Computer Interfaces (BCIs) for distinguishing between these
states in VR. Thus, the primary objective of this study is to establish
an optimal and reliable approach for real-time classification without
the need for prior classifier training in VR, based on previous work
in AR for attention detection [62]. To achieve this, we formulate
different research questions.

Firstly, we focus on the labeled EEG dataset collected by Chiossi
et al. [11]. Following the recommendations by Lotte et al. [40], we
integrate their LDA results with the classification performance
of RF and SVM classifiers with a recursive feature selection ap-
proach. Additionally, we compare their performances against a
Neural Network (NN). Prior studies have suggested NNs are more
effective for EEG data in workload classification than linear algo-
rithms [2, 17, 34]. For better comparability, a vanilla neural network
is initially trained using the same feature set to determine if it ex-
hibits any advantages with identical features. This approach would
allow us to verify: RQ1Which are the best feature sets to classify
external and internal attention in VR?

Next, we aim to investigate: RQ2 Which is the optimal time
window length for achieving high classification accuracy? Given
the rapid fluctuations in attention, longer time windows may en-
compass periods of both internal and external states, potentially
compromising accuracy [15]. Conversely, shorter epoch lengths
might better estimate the current state but could reduce accuracy
due to fewer data samples. This investigation also examineswhether
a higher number of time windows (and consequently, feature sets)
used for training the classifier improves the accuracy of state pre-
diction or if the overall length of the training data in seconds is
more critical (RQ3). This inquiry will determine if segmenting
short training periods into multiple windows is as effective as using
fewer, longer windows over extended sessions.

Thus, addressing RQ1 and RQ2 leads us to reformulate and in-
troduce a newRQ3: How does the size of training data influence the
trade-offs between model accuracy and computational efficiency?

3 Dataset Processing

In this work, we analyze the EEG dataset from Chiossi et al. [11]
labeled with their attentional state (internal and external). Their
dataset encompassed EEG frequencies (delta, theta, alpha, beta, and
gamma) averaged every 20 s in a Visual Monitoring task, recruiting
external attention [59], and a visualWorkingMemory (WM)N-Back
task, recruiting internal attention resources [12, 13, 33].

3.1 Experimental Tasks

In the original study, participants engaged with two types of tasks
during the study: Visual Monitoring task and N-Back task.

3.1.1 External Attention - Visual Monitoring. In the Visual Moni-
toring task, participants were presented with a continuous stream
of non-player characters (NPCs) at a rate of 334 NPCs per minute.
They were instructed to visually track and follow NPCs that ap-
peared in randomly assigned colors (blue, green, black, and red).
This task was designed to engage external attention resources, re-
quiring substantial visual processing.

3.1.2 Internal Attention - N-Back Task. Participants performed the
N-Back task in the Internal attention block (N=2). Participants were
presented with a sequence of spheres positioned on a marble-like
pillar. They had to place each sphere into one of two buckets on
the left and right sides, respectively. The spheres could appear in
four different colors (green, red, blue, and black) in a randomized
sequence. The placement of each sphere depended on its color, and
the sphere’s color presented two steps before it. If the colors were
the same, the participant had to place the sphere in the right bucket.
If the colors differed, the participant had to put the sphere in the left
bucket. New spheres would appear either after the current sphere
was placed in one of the buckets or after a delay of 4 seconds.

3.2 EEG Features Extraction

We utilized MNE Python [25] for EEG analysis. The preprocessing
pipeline involved a notch filter at 50 Hz, followed by a band-pass
filter ranging from 1 to 70 Hz. The signal was then re-referenced to
the common average reference (CAR) and subjected to Independent
Component Analysis (ICA) using the Infomax algorithm. We em-
ployed the "ICLabel" MNE plugin [48] for automated classification
and correction of ICA components.

The epoch features were derived from the Power Spectral Densi-
ties (PSDs) of different electrode groups based on prior work [11,
27, 38] via the Welch method. We extracted average powers for
Delta (.5 - 4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (14-30 Hz),
and lower Gamma-band (30-45 Hz). This resulted in following ROIs:
Fz, F3, F4, F7, F8, Cz, C3, C4, Pz, P3, P4, Oz, O1, O2 for delta; Fz, F1,
F2, F3, F4, FC1, FC2 for theta and beta; Pz, P1, P2, P3, P4, POz, PO3,
PO4, Oz, O1, O2 for alpha; Fz, F1, F2, F3, F4, FC1, FC2 for beta; Fz,
F3, F4, FT7, FT8, Cz, C3, C4, Pz, P3, P4, PO7, PO8, Oz for gamma.
We employed extracted EEG frequencies over 20 different window
lengths, varying from 1 second to 20 sec in steps of 1 sec.
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(a) External Attention - Visual Monitoring

(b) Internal Attention - N-Back

Figure 1: Experimental Tasks. In the Visual Monitoring task

(a), participants are exposed to a Stream of NPCs and tasked

with tracking NPCs of a specified color by following them

with their gaze. In the N-Back (b), participants interact with

a sequence of spheres displayed on a pillar. They must sort

each sphere into either the left or right bucket based on the

color match to the sphere presented two steps prior (N=2).

Spheres are placed in the left bucket if their color differs from

the reference, and in the right bucket if the color matches.

4 Classification and Hyper-Parameter

Optimization

In this study, we aimed to investigate the impact of different param-
eters, i.e., feature set, model, and training ratio, on classification
accuracy. We selected LDA based on previous research as it has
demonstrated effectiveness for binary classification tasks in VR
and AR settings [11, 60, 64], together with an SVM [55]. Addition-
ally, we included an RF classifier [40]. However, Appriou et al. [2]
suggested that a neural network approach may yield better results
for EEG classification. Thus, we also implemented a vanilla neural
network.

We evaluate the predictions using accuracy using equally fre-
quent internal and external classes and stratified test and training
splits. The baseline chance level for correct class prediction was
set at 50%. For hyper-parameter optimization, we performed a grid
search with 8-fold cross-validation for all four classifier parameters:
LDA, SVM, RF, and NN. We looked for the best internal model
parameter configuration in the grid search.

We systematically varied the features, window length, and train-
test split to address our research questions about how the data
should be prepared for training. In the process, we shuffled the
dataset and did a 5-fold bootstrapping for each training configura-
tion to ensure hyperparameter robustness. For features, we used all
31 unique EEG band combinations of Delta, Theta, Alpha, Beta, and
Gamma. We tested lengths of 1 to 20 seconds for window length in
steps of 1 sec. For the train-test split, we tested 50%, 70%, and 90%
of the participants in the train split; we used the remaining partici-
pants for testing. This resulted in 31 × 20 × 3 × 5 = 9300 runs for
internal model hyperparameter turning, aka the above-described
grid search.

This approach ensures that the model is both tailored to the
specific characteristics of the dataset and robust against overfitting
and underfitting, leading to reliable predictive performance when
applied to the test data.

4.1 Linear Discriminant Analysis

We implemented the LDA model using the Python Scikit-learn tool-
box [46]. We performed a grid search on the parameters solver
and shrinkage, and n_components. For solver, we systematically
tested svd, lsqr, and eigen. For shrinkage, we varied between None,
and auto using the Ledoit-Wolf lemma. Shrinkage regularization is
crucial for improving the robustness and accuracy of the LDA, par-
ticularly when dealing with datasets where the number of features
may be comparable to, or exceed, the number of samples. Shrink-
age helps stabilize the computation of the covariance matrix by
adjusting it towards a scaled identity matrix, thus mitigating issues
related to its singularity or near-singularity. For n_components, we
tested 2 to 5 components and None.

4.2 Support Vector Machine

We employed the Support Vector Machine (SVM) classifier via the
Python Scikit-learn toolbox [46]. We performed a grid search on
the parameters C and kernel. Our SVM configuration specifically
utilized the Radial Basis Function (RBF) kernel to effectively manage
the non-linear characteristics of EEG data by mapping the inputs
into a higher-dimensional space where a linear decision boundary
is feasible based on [29, 52]. Additionally, we tested the kernels poly
and sigmoid. We varied the regularization parameter C using 0.025,
0.5, 1.0, 2.0 and 5.0. Rohani and Puthusserypady [52] found 1.0 to
be beneficial. We set the maximum amount of iterations to 1,00,000
to allow for adequate training but terminate the process when
convergence is unlikely in time. In a grid search, this is important
as SVMs might never terminate.

4.3 Random Forest

We implemented the RF classifier in Python Scikit-learn toolbox [46].
We performed a grid search on max_depth, max_features, and
n_estimators. The training and testing sets were configured in
alignment with the methodology adopted for LDA, which involved
a shuffled and stratified data distribution. However, unlike LDA,
the normalization of training data was intentionally omitted in the
RF pipeline. This decision was based on the characteristic perfor-
mance of RF, which generally shows better accuracy and robustness
with non-normalized data due to its inherent handling of feature
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variability. The feature vectors used in training and testing the
RF classifier were derived from the PSD of each electrode group,
providing a rich dataset reflective of the underlying neurological
patterns. For the configuration of the RF classifier, the initial setup
included a maximum tree depth of 40 and 100 estimators. These
hyperparameters were selected based on preliminary studies sug-
gesting their effectiveness for datasets of comparable complexity
and size [44, 62, 63].

4.4 Neural Network

We implemented the Vanilla Neural Network (NN) via Scikit-learn
toolbox [46]. We performed a grid search on the parameter hidden_
layer_sizes. We set the parameter early_stopping to true to
speed up the process and to mitigate overfitting. Also, we increased
max_iter to 1000 from the 200 default iterations. We used relu as
activation on the hidden layers and softmax function on the last
layer to support the classification. For all tests, we used the Adam
optimizer.

5 Results

The main objective of this work is to investigate the impact of
various choices in terms of feature set, model selection, and gen-
eralization for attention detection in VR settings. In Section 5.2,
we focused on feature selection to determine the most informative
features for classification. In Section 5.4, we examined the effects of
different time window lengths for training and testing data. Here,
we aimed to identify the optimal window size for accurate clas-
sification. Next, in Section 5.5, we compared the performance of
different classification algorithms, assessed the effectiveness of each
algorithm, and made informed decisions regarding model selection.

5.1 Training Quality

We first look at the accuracy of the training and test for each model.
The difference is shown in Figure 2. RF has many overfitted models,
aka the test performance is worse than the train quality [9]. Also,
we see that some models are under-fitted, so the test accuracy is
better than the training accuracy. As both are not desired and lead to
not generalizable results, we removed under-fitted results (< −10)
and over-fitted results (> 30) from the below analyses.

We fitted a linear mixed model (LMER), estimated using REML
and the nloptwrap optimizer to predict accuracy based on fit type
(formula: accuracy ∼ fit). The model included feature combination
(comb) as a random effect (formula: ∼ 1|comb). The model’s total
explanatory power was substantial, with a conditional 𝑅2 of .78,
and the part related to the fixed effects alone (marginal 𝑅2) was .12.
The model’s intercept, corresponding to fit = good, was .70, 95%
CI [.66, .74], 𝑡 (37195) = 31.35, 𝑝 < .001. In this model, the effect of
underfitting was statistically significant and negative, 𝛽 = −.10,
95% CI [-.11, -.10], 𝑡 (37195) = −135.15, 𝑝 < .001; standardized
𝛽 = −.68, 95% CI [-.69, -.67]. Meanwhile, the effect of overfitting
was statistically significant and positive, 𝛽 = .29, 95% CI [.27, .31],
𝑡 (37195) = 26.17, 𝑝 < .001; standardized 𝛽 = 1.91, 95% CI [1.77,
2.06].

These results indicate that models classified as "generalizable"
achieved the highest accuracy on average, whereas underfitting
models were associated with significantly lower accuracy, and
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Figure 2: The histograms for the quality of the four models.

overfitting models led to moderately higher accuracy at the po-
tential cost of generalizability.

5.2 Feature Selection

Next, we look at the features with the overall highest probabil-
ity of success; see Figure 3. Here, we can identify that the 8 best-
performing models consistently rely on the same 8 feature sets1. In
this context, best-performing models are defined as those achieving,
on average, an accuracy of over 80%. We will focus on these models
in the remainder of the analyses. Here, we analyze the accuracy
across models on the best feature sets by fitting an LMER for each
model type. This approach allows us to assess how each model type
performs when utilizing the top-performing feature sets. Complete
statistical results are available in OSF at https://osf.io/vm9bd/.

5.2.1 LDA. The LMM analysis shows that the model’s total ex-
planatory power remains low, with a multiple 𝑅2 of 0.042 (adjusted
𝑅2 = 0.039), indicating that approximately 4.2% of the variance in
accuracy is explained by the feature combinations. The model’s
intercept, representing the baseline accuracy level for the refer-
ence combination, is 0.837, with an estimated standard error of
0.00398, 𝑡 (2197) = 210.38, 𝑝 < 2 × 10−16. Several feature combina-
tions exhibit statistically significant positive effects on accuracy.
The combination A-T-B-D-G has a significant positive impact, with
𝛽 = 0.0267, standard error = 0.00549, 𝑡 (2197) = 4.87, 𝑝 = 1.23×10−6.
Similarly, the combination A-T-B-G shows a significant positive
effect, with 𝛽 = 0.0304, standard error = 0.00551, 𝑡 (2197) = 5.51,
𝑝 = 3.96 × 10−8. Another combination, T-B-D-G, also yields a sta-
tistically significant positive effect, with 𝛽 = 0.0313, standard error
= 0.00547, 𝑡 (2197) = 5.72, 𝑝 = 1.20 × 10−8. Lastly, the combination
T-B-G shows a significant positive impact as well, with 𝛽 = 0.0238,
standard error = 0.00561, 𝑡 (2197) = 4.24, 𝑝 = 2.31×10−5. In contrast,
other combinations, such as A-T-B-D and T-B, did not emerge as
statistically significant predictors of accuracy. These results indicate
that certain feature combinations, specifically A-T-B-D-G, A-T-B-G,
T-B-D-G, and T-B-G, are associated with significant positive effects
on accuracy for the LDA model.

5.2.2 SVM. The fitted LMM for SVM showed low explanatory
power, with a multiple 𝑅2 of 0.021 (adjusted 𝑅2 = 0.018), indicating

1Best feature sets: A-T-B, A-T-B-D, A-T-B-G, T-B, T-B-G, T-B-D-G, T-B-D, and A-T-B-
D-G

https://osf.io/vm9bd/
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that approximately 2.1% of the variance in accuracy was explained
by the feature combinations. The model’s intercept, representing
the baseline accuracy for the reference combination, was 0.823, with
an estimated standard error of 0.004, 𝑡 (2314) = 205.01, 𝑝 < 2×10−16.
Within this model, several feature combinations were significant
predictors of accuracy. The combination comb = A-T-B-G had a
statistically significant positive effect, with 𝛽 = 0.0119, 95% CI
[0.0009, 0.0229], 𝑡 (2314) = 2.10, 𝑝 = 0.036. Similarly, the combi-
nation comb = T-B-D showed a significant negative effect, with
𝛽 = −0.0126, 95% CI [-0.0239, -0.0014], 𝑡 (2314) = −2.22, 𝑝 = 0.026.
The combination comb = T-B-D-G also had a statistically sig-
nificant positive effect, with 𝛽 = 0.0147, 95% CI [0.0036, 0.0259],
𝑡 (2314) = 2.60, 𝑝 = 0.009. Lastly, the combination comb = T-B-G
was also a significant positive predictor, with 𝛽 = 0.0145, 95% CI
[0.0033, 0.0257], 𝑡 (2314) = 2.55, 𝑝 = 0.011. These results suggest
that, for the SVM model, specific feature combinations, particularly
A-T-B-G, T-B-D-G, and T-B-G, were associated with significantly
higher accuracy, while T-B-Dwas associated with a slight reduction
in accuracy.

5.2.3 RF. The fitted linear mixed-effects model (LMER) for the RF
model demonstrated low explanatory power, with a multiple 𝑅2 of
0.028 (adjusted 𝑅2 = 0.025), indicating that approximately 2.8% of
the variance in accuracy was explained by the feature combinations.
The model’s intercept, representing the baseline accuracy for the
reference combination, was 0.810, with an estimated standard error
of 0.0039, 𝑡 (2192) = 210.32, 𝑝 < 2 × 10−16. Within this model,
several feature combinations were significant predictors of accuracy.
The combination A-T-B-G had a statistically significant positive
effect, with 𝛽 = 0.0195, 95% CI [0.0088, 0.0303], 𝑡 (2192) = 3.58,
𝑝 = 0.0004. Conversely, the combination T-B-D showed a significant
negative effect on accuracy, with 𝛽 = −0.0148, 95% CI [-0.0256, -
0.0040], 𝑡 (2192) = −2.70, 𝑝 = 0.007. The combination T-B-D-G
also exhibited a significant positive effect, with 𝛽 = 0.0108, 95%
CI [0.0001, 0.0215], 𝑡 (2192) = 1.98, 𝑝 = 0.048. Lastly, T-B-G was
another significant positive predictor, with 𝛽 = 0.0164, 95% CI
[0.0066, 0.0262], 𝑡 (2192) = 3.00, 𝑝 = 0.003. These results suggest
that, for the RF model, specific feature combinations, particularly
A-T-B-G, T-B-D-G, and T-B-G, were associated with significantly
higher accuracy, while T-B-D was associated with a decrease in
accuracy.

5.2.4 NN. The LMM for the NN model showed low explanatory
power, with a multiple 𝑅2 of X (adjusted 𝑅2 = 𝑌 ), indicating that
approximately X% of the variance in accuracy was explained by
the feature combinations (note: replace X and Y with actual val-
ues if needed). The model’s intercept, representing the baseline
accuracy for the reference combination, was 0.816, with an esti-
mated standard error of 0.0048, 𝑡 (2314) = 168.62, 𝑝 < 2 × 10−16.
Within this model, several feature combinations were significant
predictors of accuracy. The combination A-T-B-D-G had a statis-
tically significant positive effect, with 𝛽 = 0.0171, 95% CI [0.0040,
0.0302], 𝑡 (2314) = 2.54, 𝑝 = 0.011. Similarly, A-T-B-G showed a
positive effect on accuracy, with 𝛽 = 0.0181, 95% CI [0.0050, 0.0313],
𝑡 (2314) = 2.68, 𝑝 = 0.007. Another significant positive effect was
found for the combination T-B-D-G, with 𝛽 = 0.0201, 95% CI [0.0068,
0.0334], 𝑡 (2314) = 2.97, 𝑝 = 0.003. Lastly, the combination T-B-G
also demonstrated a significant positive impact, with 𝛽 = 0.0149,

95% CI [0.0016, 0.0283], 𝑡 (2314) = 2.20, 𝑝 = 0.028. These results
suggest that, for the NN model, feature combinations A-T-B-D-G,
A-T-B-G, T-B-D-G, and T-B-G were associated with significantly
higher accuracy.

5.3 Window Evaluation with Bayesian Analysis

Bayesian data analysis offers several advantages over classical sta-
tistical methods, especially in studies with complex hierarchical
data structures. Following recent research [41, 51, 58], Bayesian
approaches enable us to incorporate prior knowledge, handle small
sample sizes, and estimate effect sizes with a given level of precision.
Particularly useful in contexts with limited sample sizes and nested
data structures, Bayesian methods allow us to quantify the size and
uncertainty of effects [31], offering insights into both the presence
and absence of effects. We implemented Bayesian linear mixed-
effects models to evaluate time window accuracy across models,
using the brms [6, 8]. Our model choices included four chains with
4,000 iterations and a warm-up of 1,000 samples, ensuring stable
posterior estimates and convergence. Priors were weakly informa-
tive, with normal priors centered at zero for both the fixed effects
and intercept, allowing for flexibility without imposing strong as-
sumptions. The model also included an exponential prior on the
random effect standard deviation, tailored to capture variability
across combinations. We evaluated model convergence through
trace plots, Gelman-Rubin statistics (𝑅 < 1.1), and effective sample
sizes, ensuring the reliability of the posterior estimates. Posterior
predictive checks were also conducted to assess the model’s fit to
the observed data visually. These modeling choices, in combina-
tion with approximate leave-one-out cross-validation (LOOCV) for
model comparison [57], maximize the robustness of our inferences,
supporting our aim to identify the optimal time window and assess
model performance.

5.3.1 LDA. The Bayesian mixed-effects model assessing the im-
pact of window length on LDA accuracy revealed that increasing
the window length consistently improves accuracy. The model in-
cluded window length as a fixed effect and feature combination as a
random effect. The intercept, representing the baseline accuracy for
a window length of 1 second, was estimated at 0.79 (95% CI [0.78,
0.81]), with a standard error of 0.01. This result indicates a high
baseline accuracy even at the shortest window length. As window
length increased, the model showed incremental positive effects
on accuracy: a window length of 2 seconds produced an effect of
𝛽 = 0.04 (95% CI [0.02, 0.06]), while lengths of 3 and 4 seconds
resulted in gains of 𝛽 = 0.04 (95% CI [0.02, 0.05]) and 𝛽 = 0.05 (95%
CI [0.04, 0.07]), respectively. Longer windows continued to enhance
accuracy, reaching 𝛽 = 0.07 (95% CI [0.05, 0.08]) at lengths of 9, 11,
and 13 seconds, suggesting that larger window lengths generally
support improved classification performance. The random effect for
feature combinations, with an estimated standard deviation of 0.02
(95% CI [0.01, 0.04]), captured minor variability in accuracy across
different feature sets. The model’s residual error (𝜎 = 0.06, 95% CI
[0.06, 0.06]) indicates consistency in the model’s performance.

5.3.2 SVM. The intercept, representing the baseline accuracy for
a window length of 1 second, was estimated at 0.77 (95% CI [0.76,
0.79]), with a standard error of 0.01, indicating a reliable starting
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Figure 3: Feature Selection Results.Classification accuracy across various EEG feature combinations for four machine learning

models: LDA, SVM, RF, and NN. Each plot displays the distribution of accuracy percentages across different feature sets, alpha

(A), theta (T), beta (B), delta (D), gamma (G) — consistently provides the highest accuracy across models

accuracy even at the shortest window length. With additional win-
dow length, accuracy showed consistent positive effects. A window
length of 2 seconds yielded an increase of 𝛽 = 0.04 (95% CI [0.02,
0.05]), while 3 seconds provided a boost of 𝛽 = 0.03 (95% CI [0.02,
0.05]). Lengths of 4 and 5 seconds continued this upward trend,
with increases of 𝛽 = 0.04 (95% CI [0.02, 0.06]) and 𝛽 = 0.05 (95%
CI [0.04, 0.07]), respectively. This pattern persisted, with window
lengths of 7–20 seconds contributing incremental increases up to
𝛽 = 0.07 (95% CI [0.05, 0.09]) at various time points, indicating
that longer windows generally enhance accuracy for SVM in these
settings. The random effect for feature combinations, with an es-
timated standard deviation of 0.01 (95% CI [0.01, 0.02]), captured
minimal variability in accuracy across different feature sets. The
residual error for the model (𝜎 = 0.07, 95% CI [0.06, 0.07]) reflects
consistent performance across observations. These results suggest
that increasing window length enhances accuracy for SVM, with
accuracy improvements plateauing around longer durations.

5.3.3 RF. The Bayesian mixed-effects model examining the effect
of window length on RF accuracy demonstrated incremental gains
in accuracy as window length increased. In this model, window
length was included as a fixed effect, with feature combination
treated as a random effect to account for variability across feature
sets. The intercept, representing the baseline accuracy at a window
length of 1 second, was estimated at 0.77 (95% CI [0.75, 0.78]), with a
standard error of 0.01. This high baseline suggests reliable accuracy
evenwithminimal window length. As window length increased, the
model showed consistent positive effects on accuracy. Specifically,
a window length of 2 seconds resulted in an increase of 𝛽 = 0.04
(95% CI [0.02, 0.06]), and window lengths of 3 and 4 seconds showed
gains of 𝛽 = 0.04 (95% CI [0.02, 0.06]) and 𝛽 = 0.04 (95% CI [0.03,
0.06]), respectively. Further increments continued to yield small
but steady improvements, with a length of 8 seconds reaching
𝛽 = 0.06 (95% CI [0.04, 0.07]) and length 18 showing the highest
effect of 𝛽 = 0.06 (95% CI [0.04, 0.08]). The random effect for feature
combinations, with a standard deviation estimate of 0.01 (95% CI
[0.01, 0.03]), indicated minor variability in accuracy across different
feature sets, suggesting that the model was relatively stable across
combinations. The residual error (𝜎 = 0.06, 95% CI [0.06, 0.07])
reflects the consistency of the model’s performance.

5.3.4 NN. The Bayesian mixed-effects model assessing the influ-
ence of window length on NN accuracy revealed consistent ac-
curacy improvements with longer window lengths. The model
included window length as a fixed effect and feature combination
as a random effect to account for variation across feature sets. The
intercept, representing the baseline accuracy for a window length
of 1 second, was estimated at 0.78 (95% CI [0.76, 0.80]), with a stan-
dard error of 0.01. Accuracy demonstrated progressive increases
as window length extended. For instance, a window length of 2
seconds showed an increase of 𝛽 = 0.04 (95% CI [0.02, 0.06]), while
3 seconds yielded a gain of 𝛽 = 0.06 (95% CI [0.04, 0.08]). Similar
gains were observed at 4 and 5 seconds, with estimates of 𝛽 = 0.05
(95% CI [0.03, 0.07]) and 𝛽 = 0.05 (95% CI [0.03, 0.08]), respectively.
By 6 seconds, the accuracy reached 𝛽 = 0.08 (95% CI [0.06, 0.10]),
indicating notable benefits from longer windows. This pattern held
steady across subsequent increments, with estimates remaining
positive up to a window length of 20 seconds (𝛽 = 0.03, 95% CI
[0.01, 0.05]). The random effect for feature combinations, with an
estimated standard deviation of 0.01 (95% CI [0.01, 0.03]), indicated
minor variability in accuracy across different feature sets. The resid-
ual error for the model (𝜎 = 0.08, 95% CI [0.08, 0.08]) reflects stable
performance across observations.

5.4 Determining Optimal Time Window

Lengths via Piecewise Regression

Given the results of our Bayesian linearmixed-effectsmodels, which
showed incremental increases in accuracy with length across all
models (LDA, SVM, RF, and NN), we have chosen to apply piecewise
regression to identify any potential breakpoint where the effect of
length on accuracy may stabilize [43]. Piecewise regression is par-
ticularly suited for detecting changes in gradient within datasets
and can reveal if further increases in time window length yield
diminishing returns on accuracy [43]. This approach is particularly
effective for identifying structural changes within intervals of the
data, allowing the model to accurately capture shifts in the relation-
ship between time window length and accuracy [32, 47]. We aim
to identify an optimal time window length that maximizes perfor-
mance efficiency while maintaining model reliability and reducing
unnecessary computational costs. Results are depicted in Figure 6.
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Figure 4: Posterior Densities forWindow Length Effects on Accuracy Across Different Models. This figure illustrates the effect of

varying window lengths on the accuracy of four machine learning models: (a) LDA, (b) SVM, (c) RF, and (d) MLP. Each ridge plot

represents the posterior distribution of the effect of window length on accuracy, with colors ranging from green (lower window

lengths) to yellow (higher window lengths). The x-axis shows the effect size on accuracy, while the y-axis represents window

lengths in seconds. Dashed vertical lines within each ridge indicate the mean effect for that window length. Bayesian analysis

shows that increasing window length positively impacts accuracy across all models, although the magnitude of improvement

varies. For LDA, accuracy improves steadily, with larger gains up to around 20 seconds. SVM shows consistent accuracy gains

with window lengths up to 8 seconds, after which improvements become smaller. RF exhibits stable accuracy growth across

all window lengths, with noticeable, gradual gains up to 20 seconds. MLP shows similar incremental improvements, with

significant gains up to around 10 seconds before leveling off. These results illustrate that while longer windows generally

enhance model accuracy, each model’s response to window length varies, indicating different optimal ranges for incremental

accuracy gains across models.

5.4.1 LDA Time Window. In the segmented regression analysis
for LDA, a significant breakpoint was identified at length = 6.31
seconds (SE = 0.797), as shown in Figure 6. The regression model
revealed distinct slopes before and after the breakpoint. For window
lengths up to 6.31 seconds, there was a significant positive associa-
tion between window length and accuracy, 𝑏 = 0.0065, 𝑆𝐸 = 0.0015,
𝑡 (15) = 4.33, 𝑝 < 0.001. After the breakpoint, the slope turned
slightly negative, 𝑏 = −0.0061, 𝑆𝐸 = 0.0015, though this change
was not statistically significant, 𝑝 > 0.05. The model accounted for
a substantial proportion of the variance in accuracy, with 𝑅2 = 0.83
and an adjusted 𝑅2 = 0.80.

5.4.2 SVM Time Window. In the segmented regression analysis
for SVM, a significant breakpoint was identified at length = 6.51
seconds (SE = 0.982), as shown in Figure 6. The model displayed
different slopes before and after the breakpoint. Specifically, for

window lengths up to 6.51 seconds, there was a significant positive
association between window length and accuracy, 𝑏 = 0.0056, 𝑆𝐸 =

0.0015, 𝑡 (15) = 3.82, 𝑝 = 0.0017. Beyond the breakpoint, the slope
changed, indicating a slight negative trend, 𝑏 = −0.0050, 𝑆𝐸 =

0.0015, though this change was not statistically significant, 𝑝 > 0.05.
The model explained a substantial proportion of the variance in
accuracy, with 𝑅2 = 0.84 and an adjusted 𝑅2 = 0.80.

5.4.3 RF Time Window. In the segmented regression analysis for
RF, a breakpoint was identified at length = 6.20 seconds (SE = 1.815),
as depicted in Figure 6. The model showed different slopes before
and after the breakpoint. For window lengths up to 6.20 seconds,
there was a positive but not statistically significant association
between window length and accuracy, 𝑏 = 0.0039, 𝑆𝐸 = 0.0026,
𝑡 (15) = 1.47, 𝑝 = 0.162. Beyond the breakpoint, the slope became
negative, 𝑏 = −0.0046, 𝑆𝐸 = 0.0027, though this change was not
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window length in seconds, and the y-axis shows the accuracy.
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Figure 6: Piecewise regression analysis showing breakpoints in accuracy with increasing window length across four models:

LDA, SVM, RF, and NN. The LDA model shows a breakpoint at 6.3s, indicating diminishing returns in accuracy gains beyond

this point. The SVMmodel’s breakpoint is at 6.5s, suggesting an early plateau in accuracy. The RF model has a breakpoint at

6.5s. For the NN model, accuracy levels off at a breakpoint of 6s. These breakpoints inform optimal time window lengths for

balancing accuracy and efficiency in each model.

statistically significant, 𝑝 > 0.05. The model explained a modest
proportion of the variance in accuracy, with 𝑅2 = 0.23 and an
adjusted 𝑅2 = 0.07.

5.4.4 NN Time Window. In the segmented regression analysis for
NN, a significant breakpoint was identified at length = 6 seconds
(SE = 1.022), as illustrated in Figure 6. The regression model dis-
played distinct slopes before and after the breakpoint. For window
lengths up to 6 seconds, there was a marginally significant posi-
tive association between window length and accuracy, 𝑏 = 0.0062,
𝑆𝐸 = 0.0031, 𝑡 (15) = 2.00, 𝑝 = 0.064. Beyond the breakpoint, the
slope turned negative,𝑏 = −0.0092, 𝑆𝐸 = 0.0032, though this change
was not statistically significant, 𝑝 > 0.05. The model explained a
considerable proportion of the variance in accuracy, with 𝑅2 = 0.66
and an adjusted 𝑅2 = 0.59.

5.5 Training Split Ratio

We evaluated the effect of ratio on accuracy (acc) for each model
using a linear mixed-effects model, with length and comb as ran-
dom effects. Here, we only looked at the eight best-performing
feature combinations. The LDA model predicting accuracy from
ratio while controlling for length and comb as random effects re-
vealed a significant positive effect of ratio, 𝛽 = .012, 𝑆𝐸 = .006,
𝑡 (9300) = 2.10, 𝑝 < .05. The intercept was significant, 𝛽 = .663,
𝑆𝐸 = .025, 𝑡 (9300) = 26.93, indicating a baseline accuracy level. For
the SVM model, ratio significantly predicted accuracy, 𝛽 = .020,
𝑆𝐸 = .006, 𝑡 (9300) = 3.38, 𝑝 < .01, suggesting an increase in accu-
racy as ratio increased. The intercept was also significant, 𝛽 = .623,
𝑆𝐸 = 0.024, 𝑡 (9300) = 26.31. The RF model demonstrated a signifi-
cant effect of ratio on accuracy, 𝛽 = .026, 𝑆𝐸 = .005, 𝑡 (9300) = 5.17,
𝑝 < .001, showing that accuracy increased with ratio. The intercept
was significant, 𝛽 = 0.614, 𝑆𝐸 = .021, 𝑡 (9300) = 29.15. The NN
model indicated a substantial positive effect of ratio on accuracy,
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𝛽 = .039, 𝑆𝐸 = .006, 𝑡 (9300) = 6.80, 𝑝 < .001, with a significant
intercept, 𝛽 = .622, 𝑆𝐸 = .023, 𝑡 (9300) = 27.28. Results are depicted
in Figure 7.

5.6 Hyper Parameter

The following section provides a descriptive analysis of the impact
of various hyperparameters on model accuracy. Each hyperparam-
eter setting’s effect on accuracy is discussed for each model type,
highlighting trends and observations.

5.6.1 RF Hyperparameters.

Max Depth. The accuracy shows a relatively consistent distribu-
tion across different values of max depth (5, 10, 15, 20, and None),
with median values clustering around similar ranges. However,
higher depth values, such as 20 and "None," exhibit slightly more
variance, indicating that while increasing maximum depth can influ-
ence accuracy variability, there is no clear linear trend in improving
median accuracy.

Max Features. For the max features parameter, the settings (1,
log, sqrt, and None) yield comparablemedian accuracy levels, with
the None setting showing higher variance and a more dispersed
accuracy distribution. This suggests that allowing the model to
consider all features (None) does not necessarily improve median
accuracy but increases performance variability.

Number of Estimators. The n_estimators parameter, which con-
trols the number of trees, shows that while accuracy distributions
are broadly similar across settings (10, 50, 100, 150), n_estimators =
100 achieves a slightly higher median and a narrower interquartile
range. This suggests that using 100 estimators might provide a
balance between accuracy and stability.

5.6.2 LDA Hyperparameters.

Shrinkage. The shrinkage parameter, with options auto and None,
shows that auto tends to yield a higher median accuracy with less
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Figure 7: Comparison of classification accuracy across differ-

ent training split ratios (0.5, 0.7, 0.9) for LDA, SVM, RF, and

NN models in a person-independent EEG-based attention

detection task. The accuracy generally increases with higher

training ratios, with LDA showing the most consistent per-

formance.

variability compared to None. This indicates that automated shrink-
age might contribute to more consistent performance outcomes.

Solver. For the solver parameter, the choices svd and lsqr exhibit
minimal differences in accuracy distribution, with both solvers
achieving similar median values. This suggests that the choice of
solver may have limited impact on accuracy in this context.

Number of Components. Only one setting for n_components (None)
is shown, resulting in a high median accuracy with minimal vari-
ability. This indicates that this setting may be well-suited for maxi-
mizing stability in performance.

5.6.3 SVM Hyperparameters.

C (Regularization Parameter). The C parameter, which controls
regularization strength, shows increasing variance in accuracy dis-
tribution as its value increases (0.025, 0.5, 1.0, 2.0, 5.0), particularly
at C = 5.0. Median accuracy remains fairly stable across settings,
suggesting that while regularization affects the spread of accuracy
outcomes, the central tendency remains less affected.

Kernel. The kernel parameter displays notable differences in ac-
curacy distribution across settings (poly, rbf, sigmoid). The rbf
kernel achieves the highest median accuracy with the least variabil-
ity, indicating it may be the most suitable for models that prioritize
accuracy and robustness.

5.6.4 NN Hyperparameters.

Hidden Layer Sizes. Accuracy distributions for various configu-
rations of hidden layer sizes (50, 100, 150–50, 50–50, 100–50) exhibit
similar median values, though the 150–50 configuration shows
slightly higher variability. This suggests that while hidden layer
sizes impact variance in accuracy, they do not significantly alter
median performance across configurations.

6 Discussion

Understanding the impact of different factors on classification is
crucial for developing effective attention-aware systems.We discuss
the implications of our findings regarding feature set composition,
window length, and training split ratio in adaptive VR.

6.1 RQ 1 : Optimal Feature Set

Addressing RQ1, we identified eight feature combinations with the
highest probability of success across multiple models: A-T-B, A-T-
B-D, A-T-B-G, T-B, T-B-G, T-B-D-G, T-B-D, and A-T-B-D-G. These
combinations achieved an accuracy of over 80% on average, indicat-
ing their robustness for attention classification in VR applications.
Similar studies on attention detection in EEG data have emphasized
the benefits of multi-band feature sets for improving classifier per-
formance, supporting our approach to using a broad EEG spectrum
to enhance attention classification in adaptive systems [4, 11, 38].

6.1.1 LDA Performance with Specialized Feature Sets. The Linear
Discriminant Analysis (LDA)model exhibited nuanced performance
across various feature combinations, though the overall explanatory
power of the model remained modest, with feature combinations
accounting for a small portion of variance in accuracy. Despite this
limited explanatory power, specific feature combinations yielded
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significant improvements in classification accuracy, highlight LDA
outcome on leverage targeted EEG band sets effectively. Notably,
combinations such as A-T-B-D-G, A-T-B-G, T-B-D-G, and T-B-G
had a marked positive impact on accuracy. These combinations
involve a mix of theta, beta, delta, and gamma bands, suggesting
that including delta and gamma bands may provide LDA with
richer signal information pertinent to attention classification. The
effectiveness of these combinations aligns with previous findings
that multi-band EEG data can enhance classifier performance, par-
ticularly when the combinations capture complementary neural
dynamics [11, 40].

Interestingly, other feature combinations such as A-T-B-D and
T-B did not yield significant effects on accuracy, implying that while
LDA benefits from broad-spectrum EEG data, certain bands con-
tribute more substantially to its classification capability. Specifically,
gamma and delta appear to play pivotal roles in facilitating LDA’s
performance, as evidenced by their consistent presence in the most
effective feature combinations. This finding highlights LDA’s adapt-
ability in leveraging distinct EEG frequencies and could inform
adaptive VR applications that optimize feature selection based on
the task’s attention demands.

In summary, the results indicate that although LDA’s overall
performance remains stable across various combinations, specific
sets—particularly those incorporating gamma and delta bands sub-
stantially enhance classification accuracy.

6.1.2 SVM and RF Resilience with Reduced Feature Sets.

6.1.3 SVM and RF Resilience with Selective Feature Sets. The SVM
and RF models demonstrated robustness with reduced feature sets,
maintaining significant classification accuracy even when fewer
EEG bands were included. This resilience suggests that thesemodels
can still provide effective attention classification without requir-
ing all EEG frequency bands, which is advantageous in scenarios
where computational efficiency is essential. For SVM, optimal per-
formance was observed with combinations that included the alpha,
beta, gamma, and theta bands, particularly in the A-T-B-G, T-B-D-G,
and T-B-G combinations, which were associated with significant
accuracy improvements. Interestingly, T-B-D exhibited a slight de-
crease in accuracy, indicating that certain combinations lacking the
gamma band may not be as effective for SVM in capturing relevant
EEG signals for attention detection.

The RF model similarly displayed selective effectiveness with
certain feature combinations, supporting its application in real-time
environments where computational resources may be limited. Com-
binations such as A-T-B-G, T-B-D-G, and T-B-G significantly en-
hanced accuracy, underscoring the importance of including gamma
and theta bands in configurations that optimize RF’s performance.
On the other hand, the T-B-D combination showed a reduction in
accuracy, suggesting that RF may also rely heavily on gamma for
improved classification outcomes.

6.1.4 NN and the Potential for Adaptive Feature Selection. The NN
model displayed modest performance improvements in response
to specific feature configurations, though its accuracy gains were
less pronounced than in other models. Notably, the segmented re-
gression analysis revealed a breakpoint at approximately 6 seconds,
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suggesting an optimal time window length for maximizing accu-
racy in attention classification tasks. For window lengths up to this
breakpoint, accuracy increased steadily, highlighting that NN mod-
els benefit from a balanced window length that captures sufficient
temporal information without overfitting to shorter signal fluc-
tuations. Beyond this 6-second window, however, accuracy gains
plateaued and began to decline, indicating diminishing returns with
longer windows. The observed trends imply that while NN may not
exhibit dramatic accuracy boosts with particular feature combina-
tions, it could achieve more consistent performance by employing
adaptive feature selection. For example, targeted combinations such
as A-T-B continue to show potential in boosting classification ef-
ficacy within specific contexts. This adaptability underscores the
NN model’s suitability for VR applications that require flexible at-
tention monitoring across varied user interactions and dynamic
environments. By dynamically adjusting the feature sets or time
windows based on contextual demands, VR systems can harness
the NN model’s moderate accuracy improvements while conserv-
ing computational resources, aligning well with user-centered and
context-responsive VR experiences.

6.2 RQ2 : Identification of Window Length

To identify the most effective time window lengths for classify-
ing attention states in VR (RQ2), we . By observing how accuracy
changed with each increase in window length, we pinpointed where
these improvements began to plateau. This approach helps under-
stand the balance between maximizing accuracy and minimizing
computational load, which supports real-time VR applications that
rely on efficient processing.

6.2.1 Model-Specific Optimal Window Lengths. The segmented re-
gression analysis across models revealed distinct optimal window
lengths, offering insights into the point at which accuracy gains
became minimal with further increases in window length. These
findings underscore the importance of aligning model-specific win-
dow lengths with the characteristics of each algorithm to enhance
efficiency and maintain high accuracy in attention classification
tasks within VR environments.

For LDA, the analysis identified an optimal window length at ap-
proximately 6.31 seconds. Up to this breakpoint, there was a positive
association between window length and accuracy, suggesting that
extending the window length initially improves classification per-
formance. Beyond 6.31 seconds, however, the slope shifted slightly
negative, although this change was not statistically significant. This
finding indicates that LDA benefits from a moderately extended
window length but does not require very long windows, making
it suitable for applications requiring reliable attention tracking
without incurring excessive computational demands.

The SVM model displayed a similar breakpoint at around 6.51
seconds, after which accuracy gains also began to diminish. This
optimal window length reflects SVM’s capacity to maintain high
accuracy with moderate amounts of data input. This characteristic
is advantageous in VR applications where prompt responsiveness
is crucial, as it allows SVM to perform effectively with manageable
data windows, balancing accuracy and computational load.

For the RF model, the optimal window length was observed at
6.20 seconds. Although RF’s association between window length

and accuracy was not statistically significant before or after the
breakpoint, the model’s performance stabilized around this win-
dow length. This rapid stabilization makes RF well-suited for VR
applications that prioritize real-time responsiveness and operate
under constrained computational resources, as RF can maintain
reliable classification performance even with shorter windows.

The NN model demonstrated an optimal window length at ap-
proximately 6 seconds. Up to this breakpoint, there was amarginally
significant positive association between window length and accu-
racy, after which accuracy gains turned slightly negative, though
not statistically significant. This finding suggests that NN can per-
form effectively within a relatively short window length, offering a
balance between adaptability and efficiency in VR contexts where
processing times may vary based on user interactions or application
demands.

Thesemodel-specific results highlight the optimalwindow lengths
that align with each model’s strengths, supporting VR applications
in achieving accurate attention detection while optimizing resource
use. By calibrating window lengths according to each model’s char-
acteristics, VR systems canmaximize classification performance and
maintain real-time responsiveness in varied attention-monitoring
scenarios.

6.2.2 Implications for VR Attention-Aware Adaptive Systems. The
consistent breakpoints identified around the 6-second mark across
LDA, SVM, RF, and NN models informs for designing EEG-based
attention detection in VR applications. This similarity suggests a
potential temporal threshold that captures key attention-related
EEG patterns, offering a standardized window length that could
work effectively across multiple models. Rather than requiring
model-specific window durations, VR systems could leverage this
shared 6-second breakpoint, simplifying the implementation of
attention-aware adaptive systems.

Aligning VR system design with this approximate 6-second win-
dow length balances the trade-off between accuracy and computa-
tional efficiency. This threshold appears to represent an effective
duration for capturing EEG signal information, beyond which ad-
ditional data yields minimal gains in classification accuracy. For
applications needing reliable attention tracking, particularly in
resource-limited settings, a standardized window length enables
consistent performance across models, reducing the complexity of
tailoring unique configurations for each algorithm.

The convergence of breakpoints across models also suggests
that EEG signals carry a characteristic attention-related informa-
tion density within this time frame. This insight supports the hy-
pothesis that EEG data for attention classification may exhibit a
natural temporal resolution, beneficial for adaptive VR environ-
ments where attention shifts must be detected and responded to
promptly. By standardizing around this effective window length,
VR systems can achieve a high degree of compatibility across dif-
ferent machine-learning models, supporting robust and efficient
real-time adaptations in various VR contexts.

6.3 RQ3 : Training Ratio

We analyzed effect of the training split ratio on the performance of
various model to addressRQ3. Generally, increasing the proportion
of training data tends to enhance model performance. This trend
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identifies the benefit of extensive training datasets in improving
accuracy, a finding that aligns with expectations across machine
learning applications [7, 39].

For LDA, we observed that accuracy remained relatively stable
as the training data ratio increased, suggesting robustness against
variations in training data volume. In contrast, the impact on other
models was more complex. Specifically, the NN and RF models
showed improved performance with larger training datasets. This
improvement likely reflects their greater capacity for capturing and
generalizing complex patterns from more extensive data.

However, the performance of the Support Vector Machine (SVM)
model presents a unique case. While performance improves with
initial increases in the training ratio, there appears to be a threshold
beyond which additional data does not contribute to better out-
comes and may even reduce performance. This phenomenon should
not be immediately labeled as overfitting, which typically relates
to overly complex models for the available data, but rather as a
potential inefficiency in learning from excessively large datasets.

These findings suggest that training data allocation should be
tailored to the model used. Systems employing NN or RF could
benefit from larger datasets to fully utilize their pattern recognition
capabilities. Conversely, it is important to find an optimal training
data limit for SVMs to avoid unnecessary computational expenses
and potential performance declines.

6.4 Recommendations for Hyperparameter

Selection

Based on our findings, we recommend specific hyperparameter
settings for each model to optimize accuracy and consistency in
EEG-based attention detection in VR environments.

6.4.1 LDA. Using “auto” for shrinkage improves stability by ad-
justing shrinkage based on the data, leading to more reliable results.
Solver choice (“svd” or “lsqr”) does not significantly affect accuracy,
so either option is fine. Keeping n_components at None maintains
high accuracy by preserving all relevant features, which enhances
performance stability.

6.4.2 RF. A max depth of 10–15 is optimal, as it captures data
patterns without excessive variability, which can arise with deeper
trees. Using “sqrt” for max features is ideal because it provides
consistent accuracy while controlling for unnecessary complexity.
Setting n_estimators to 100 balances accuracywith computational
efficiency, as adding more trees yields diminishing returns.

6.4.3 SVM. A moderate C value around 1.0 provides strong ac-
curacy without overfitting. The RBF kernel is the best choice, as
it captures nonlinear EEG patterns more effectively, making the
model more robust and adaptable for VR applications.

6.4.4 NN. A single hidden layer with 100 units achieves a good
balance between accuracy and computational demand. This configu-
ration minimizes complexity while maintaining stable performance
and is suitable for real-time applications.

6.5 Limitations & Future Work

We acknowledge several limitations in our study, including feature
generation, task generalization, and the constraints due to dataset

size. These limitations highlight areas for future investigations to
improve online attention detection within VR.

Concerning feature generation, our study utilized an EEG setup
with 64 electrodes. However, future research could explore the
feasibility of reducing the number of electrodes to enhance BCI
usability and minimize their intrusiveness. Considering the trade-
off between the number of electrodes and classification accuracy is
crucial. While increasing the number of electrodes might improve
accuracy, it could also lead to increased system complexity and
reduced user comfort. Thus, achieving an optimal balance between
electrode amount, accuracy, and real-time performance requires
meticulous evaluation in various usage contexts.

In future work, we plan to implement the online performance
of our classifiers for attention detection. Leveraging the reccomen-
dations from our model selection, feature sets, and time windows
developed during offline classification will guide the transition to
online applications. A significant challenge here is the real-time
processing and analysis of EEG data, which necessitates the devel-
opment of optimized and lightweight algorithms capable of han-
dling streaming EEG data effectively. For online signal processing,
approaches such as Common Spatial Patterns (CSP) and Spatio-
spectral filters are valuable. CSP enhances the discriminative power
of EEG signals by identifying spatial filters that highlight relevant
brain activity patterns [5]. Spatio-spectral filters integrate spatial
and spectral information to refine EEG signal representation and
emphasize frequency-specific modulations [36]. These techniques
must be adapted for real-time processing, which involves optimiz-
ing algorithms and implementing parallel processing to manage
the computational demands.

Additionally, we aim to generalize our developed models to other
EEG datasets, such as those used in AR settings [60] or through the
entire Mixed Reality continuum [10] for both internal and external
attention detection. Building on the previous work [62], we plan to
leverage their findings to enhance the transferability of our models
and assess their applicability to similar tasks. Given the primary
distinction in EEG data for both attentional directions is the focus
of attention, we anticipate that the results of our study will be
replicable in other internal/external attention tasks. Nonetheless,
evaluating the task dependency of the results is critical to confirm
their generalizability.

Finally, we propose the exploration of Generative Adversarial
Networks (GANs) to aid the generalization of our models to dif-
ferent tasks. GANs have proven successful in generating artificial
data that closely mimic real-world samples, including recent ad-
vancements in artificial EEG data [21, 28]. Using GANs, we can
generate additional data samples not present in the original dataset,
facilitating data augmentation and expanding the training data
with unseen examples. This approach will enable improved model
decoding and generalization capabilities across different attention
tasks.

7 Conclusion

This work systematically evaluated model accuracy, EEG features,
window segmentation, and person-independent classification for
future online use in VR attention detection. Inspired by previous
AR research [62], we compared different machine learning models,
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including LDA, SVM, Random Forest, and Neural Net. Our work
contributes to the understanding and design of attention detection
in VR environments by addressing different features, models, and
data amounts for classification. It provides insights into the optimal
feature set, the impact of window segmentation, and the training
performance of different machine learning models.

8 Open Science

Analysis scripts and models can be accessed on the Open Science
Framework via https://osf.io/vm9bd/.
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