Changkun's Blog欧长坤的博客

Science and art, life in between.科学与艺术,生活在其间。

  • Home首页
  • Ideas想法
  • Posts文章
  • Tags标签
  • Bio关于
  • TOC目录
  • Overview概览
Changkun Ou

Changkun Ou

Human-AI interaction researcher, engineer, and writer.人机交互研究者、工程师、写作者。

Bridging HCI, AI, and systems programming. Building intelligent human-in-the-loop optimization systems. Informed by psychology, philosophy, and social science.连接人机交互、AI 与系统编程。构建智能的人在环优化系统。融合心理学、哲学与社会科学。

Science and art, life in between.科学与艺术,生活在其间。

276 Blogs博客
165 Tags标签
  • 2021
    • 01-05 00:00 Daily Reading
  • 2020
    • 12-31 00:00 Daily Reading
    • 12-30 00:00 Daily Reading
    • 12-27 00:00 Concurrency Patterns
    • 12-26 00:00 Stability Patterns
    • 12-25 00:00 LBRY
    • 12-15 00:00 "Worse is Better"
    • 12-13 00:00 Proebsting's Law
    • 12-12 00:00 Telegram Bot
    • 12-10 00:00 Apple Silicon
Changkun's Blog欧长坤的博客

Sharing and recording scattered thoughts and writings.

在这里分享并记录一些零散的想法及写作。

10 / 49 ideas
2021-01-05 00:00:00

Daily Reading每日阅读

Read these articles:

  • The Right to Read. https://www.gnu.org/philosophy/right-to-read.en.html
  • Your Computer Isn’t Yours. https://sneak.berlin/20201112/your-computer-isnt-yours/
  • Pirate Cinema. https://craphound.com/pc/download/

Noticed these two clipboard-related projects:

  • https://github.com/binwiederhier/pcopy
  • https://github.com/nakabonne/pbgopy

It seems their development timelines are very close to when I developed midgard, but we all took very different paths:

  • pcopy focuses on the clipboard itself, with features like password protection, multiple clipboards, WebUI, etc.
  • pbgopy emphasizes security for cross-device syncing, with various key configurations, but very simple functionality — only supports text

The midgard I developed focuses on these features:

  • Automatic cross-device syncing (clipboard write-back), no commands needed
  • Ability to query devices currently online
  • Supports not only text but also image syncing
  • Supports creating public URLs for clipboard content
  • Supports converting code in clipboard to Carbon images
  • Supports keyboard shortcuts
  • …

读了这几篇文章:

  • 阅读的权利。https://www.gnu.org/philosophy/right-to-read.en.html
  • 你的电脑不属于你。https://sneak.berlin/20201112/your-computer-isnt-yours/
  • 盗版电影院。https://craphound.com/pc/download/

注意到了这两个跟剪贴板相关的项目:

  • https://github.com/binwiederhier/pcopy
  • https://github.com/nakabonne/pbgopy

看起来他们开发这两个项目的时间跟我开发 midgard 的时间非常接近,不过大家都走了很不同的路线:

  • pcopy 着重剪贴板本身,比如有剪贴板的密码保护,多种剪贴板、WebUI 等特性
  • pggopy 注重设备间同步的安全性,有各种密钥配置,但功能非常简单,只支持文本

我开发的 midgard 的则主打这些特性:

  • 多设备间自动同步(剪贴板回写),不需要敲命令
  • 能够查询同时在线的设备
  • 不仅支持文本,还支持图片的同步
  • 支持对剪贴板中的内容创建公开的 URL
  • 支持剪贴板中的代码转 Carbon 图片
  • 支持键盘快捷键
  • …
2020-12-31 00:00:00

Daily Reading每日阅读

Read these articles:

  • A History of the GUI. http://www.cdpa.co.uk/UoP/Found/Downloads/reading6.pdf, https://www.readit-dtp.de/PDF/gui_history.pdf
  • History of the graphical user interface. https://en.wikipedia.org/wiki/History_of_the_graphical_user_interface
  • Algebraic Effects for the Rest of Us. https://overreacted.io/zh-hans/algebraic-effects-for-the-rest-of-us/
  • What does algebraic effects mean in FP? https://stackoverflow.com/questions/49626714/what-does-algebraic-effects-mean-in-fp
  • A Distributed Systems Reading List. https://dancres.github.io/Pages/
  • Tutte Embedding for Parameterization. https://isaacguan.github.io/2018/03/19/Tutte-Embedding-for-Parameterization/
  • Commentary on the Sixth Edition UNIX Operating System. http://www.lemis.com/grog/Documentation/Lions/index.php
  • Personal knowledge management beyond versioning. https://dl.acm.org/doi/10.1145/2362456.2362492
  • The Plain Text Life: Note Taking, Writing and Life Organization Using Plain Text Files. http://www.markwk.com/plain-text-life.html
  • Post-Evernote: How to Migrate Your Evernote Notes, Images and Tags Into Plain Text Markdown. http://www.markwk.com/migrate-evernote-plaintext.html
  • Five Levels of Error Handling in Both Python and JavaScript. https://dev.to/jesterxl/five-levels-of-error-handling-in-both-python-and-javascript-13ok

读了这些文章:

  • GUI 的历史。http://www.cdpa.co.uk/UoP/Found/Downloads/reading6.pdf, https://www.readit-dtp.de/PDF/gui_history.pdf
  • 图形用户界面的历史。https://en.wikipedia.org/wiki/History_of_the_graphical_user_interface
  • 写给普通人的代数效应。https://overreacted.io/zh-hans/algebraic-effects-for-the-rest-of-us/
  • 代数效应在函数式编程中意味着什么?https://stackoverflow.com/questions/49626714/what-does-algebraic-effects-mean-in-fp
  • 分布式系统阅读清单。https://dancres.github.io/Pages/
  • 用于参数化的 Tutte 嵌入。https://isaacguan.github.io/2018/03/19/Tutte-Embedding-for-Parameterization/
  • 第六版 UNIX 操作系统注释。http://www.lemis.com/grog/Documentation/Lions/index.php
  • 超越版本控制的个人知识管理。https://dl.acm.org/doi/10.1145/2362456.2362492
  • 纯文本生活:使用纯文本文件进行笔记、写作和生活管理。http://www.markwk.com/plain-text-life.html
  • 后 Evernote 时代:如何将 Evernote 笔记、图片和标签迁移到纯文本 Markdown。http://www.markwk.com/migrate-evernote-plaintext.html
  • Python 和 JavaScript 中错误处理的五个层次。https://dev.to/jesterxl/five-levels-of-error-handling-in-both-python-and-javascript-13ok
2020-12-30 00:00:00

Daily Reading每日阅读

Read these articles:

  • The UNIXHATERS Handbook. http://web.mit.edu/~simsong/www/ugh.pdf
  • Why are video games graphics (still) a challenge? Productionizing rendering algorithms. https://bartwronski.com/2020/12/27/why-are-video-games-graphics-still-a-challenge-productionizing-rendering-algorithms/
  • BPF and Go: Modern forms of introspection in Linux. https://medium.com/bumble-tech/bpf-and-go-modern-forms-of-introspection-in-linux-6b9802682223
  • Systems design explains the world: volume 1. https://apenwarr.ca/log/20201227
  • Error handling guidelines for Go. https://jayconrod.com/posts/116/error-handling-guidelines-for-go
  • The Missing Semester of Your CS Education. https://missing.csail.mit.edu/
  • Build your own React. https://pomb.us/build-your-own-react/

读了这些文章:

  • UNIX 憎恨者手册。http://web.mit.edu/~simsong/www/ugh.pdf
  • 为什么电子游戏图形(仍然)是一个挑战?渲染算法的产品化。https://bartwronski.com/2020/12/27/why-are-video-games-graphics-still-a-challenge-productionizing-rendering-algorithms/
  • BPF 与 Go:Linux 中的现代内省方法。https://medium.com/bumble-tech/bpf-and-go-modern-forms-of-introspection-in-linux-6b9802682223
  • 系统设计解释世界:第一卷。https://apenwarr.ca/log/20201227
  • Go 错误处理指南。https://jayconrod.com/posts/116/error-handling-guidelines-for-go
  • 计算机科学教育中缺失的一课。https://missing.csail.mit.edu/
  • 构建你自己的 React。https://pomb.us/build-your-own-react/
2020-12-27 00:00:00

Concurrency Patterns并发模式

Fan-In multiplexes multiple input channels onto one output channel.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
func Funnel(sources ...<-chan int) <-chan int {
    dest := make(chan int)                  // The shared output channel

    var wg sync.WaitGroup                   // Used to automatically close dest
                                            // when all sources are closed

    wg.Add(len(sources))                    // Increment the sync.WaitGroup

    for _, ch := range sources {            // Start a goroutine for each source
        go func(c <-chan int) {
            defer wg.Done()                 // Notify WaitGroup when c closes

            for n := range c {
                dest <- n
            }
        }(ch)
    }

    go func() {                             // Start a goroutine to close dest
        wg.Wait()                           // after all sources close
        close(dest)
    }()

    return dest
}

Fan-Out evenly distributes messages from an input channel to multiple output channels.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
func Split(source <-chan int, n int) []<-chan int {
    dests := make([]<-chan int, 0)          // Create the dests slice

    for i := 0; i < n; i++ {                // Create n destination channels
        ch := make(chan int)
        dests = append(dests, ch)

        go func() {                         // Each channel gets a dedicated
            defer close(ch)                 // goroutine that competes for reads

            for val := range source {
                ch <- val
            }
        }()
    }

    return dests
}

Future provides a placeholder for a value that’s not yet known.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
type Future interface {
    Result() (string, error)
}

type InnerFuture struct {
    once sync.Once
    wg   sync.WaitGroup

    res   string
    err   error
    resCh <-chan string
    errCh <-chan error
}

func (f *InnerFuture) Result() (string, error) {
    f.once.Do(func() {
        f.wg.Add(1)
        defer f.wg.Done()
        f.res = <-f.resCh
        f.err = <-f.errCh
    })

    f.wg.Wait()

    return f.res, f.err
}

func SlowFunction(ctx context.Context) Future {
    resCh := make(chan string)
    errCh := make(chan error)

    go func() {
        select {
        case <-time.After(time.Second * 2):
            resCh <- "I slept for 2 seconds"
            errCh <- nil
        case <-ctx.Done():
            resCh <- ""
            errCh <- ctx.Err()
        }
    }()

    return &InnerFuture{resCh: resCh, errCh: errCh}
}

Sharding splits a large data structure into multiple partitions to localize the effects of read/write locks.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
type Shard struct {
    sync.RWMutex                            // Compose from sync.RWMutex
    m map[string]interface{}                // m contains the shard's data
}

type ShardedMap []*Shard                    // ShardedMap is a *Shards slice

func NewShardedMap(nshards int) ShardedMap {
    shards := make([]*Shard, nshards)       // Initialize a *Shards slice

    for i := 0; i < nshards; i++ {
        shard := make(map[string]interface{})
        shards[i] = &Shard{m: shard}
    }

    return shards                           // A ShardedMap IS a *Shards slice!
}

func (m ShardedMap) getShardIndex(key string) int {
    checksum := sha1.Sum([]byte(key))       // Use Sum from "crypto/sha1"
    hash := int(checksum[17])               // Pick a random byte as our hash
    index := hash % len(shards)             // Mod by len(shards) to get index
}

func (m ShardedMap) getShard(key string) *Shard {
    index := m.getShardIndex(key)
    return m[index]
}

func (m ShardedMap) Get(key string) interface{} {
    shard := m.getShard(key)
    shard.RLock()
    defer shard.RUnlock()

    return shard.m[key]
}

func (m ShardedMap) Set(key string, value interface{}) {
    shard := m.getShard(key)
    shard.Lock()
    defer shard.Unlock()

    shard.m[key] = value
}

func (m ShardedMap) Keys() []string {
    keys := make([]string, 0)               // Create an empty keys slice
    wg := sync.WaitGroup{}                  // Create a wait group and add a
    wg.Add(len(m))                          // wait value for each slice
    for _, shard := range m {               // Run a goroutine for each slice
        go func(s *Shard) {
            s.RLock()                       // Establish a read lock on s
            for key, _ := range s.m {       // Get the slice's keys
                keys = append(keys, key)
            }
            s.RUnlock()                     // Release the read lock
            wg.Done()                       // Tell the WaitGroup it's done
        }(shard)
    }
    wg.Wait()                               // Block until all reads are done
    return keys                             // Return combined keys slice
}

扇入(Fan-In) 将多个输入通道多路复用到一个输出通道上。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
func Funnel(sources ...<-chan int) <-chan int {
    dest := make(chan int)                  // The shared output channel

    var wg sync.WaitGroup                   // Used to automatically close dest
                                            // when all sources are closed

    wg.Add(len(sources))                    // Increment the sync.WaitGroup

    for _, ch := range sources {            // Start a goroutine for each source
        go func(c <-chan int) {
            defer wg.Done()                 // Notify WaitGroup when c closes

            for n := range c {
                dest <- n
            }
        }(ch)
    }

    go func() {                             // Start a goroutine to close dest
        wg.Wait()                           // after all sources close
        close(dest)
    }()

    return dest
}

扇出(Fan-Out) 将输入通道的消息均匀分发到多个输出通道。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
func Split(source <-chan int, n int) []<-chan int {
    dests := make([]<-chan int, 0)          // Create the dests slice

    for i := 0; i < n; i++ {                // Create n destination channels
        ch := make(chan int)
        dests = append(dests, ch)

        go func() {                         // Each channel gets a dedicated
            defer close(ch)                 // goroutine that competes for reads

            for val := range source {
                ch <- val
            }
        }()
    }

    return dests
}

Future 为尚未确定的值提供一个占位符。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
type Future interface {
    Result() (string, error)
}

type InnerFuture struct {
    once sync.Once
    wg   sync.WaitGroup

    res   string
    err   error
    resCh <-chan string
    errCh <-chan error
}

func (f *InnerFuture) Result() (string, error) {
    f.once.Do(func() {
        f.wg.Add(1)
        defer f.wg.Done()
        f.res = <-f.resCh
        f.err = <-f.errCh
    })

    f.wg.Wait()

    return f.res, f.err
}

func SlowFunction(ctx context.Context) Future {
    resCh := make(chan string)
    errCh := make(chan error)

    go func() {
        select {
        case <-time.After(time.Second * 2):
            resCh <- "I slept for 2 seconds"
            errCh <- nil
        case <-ctx.Done():
            resCh <- ""
            errCh <- ctx.Err()
        }
    }()

    return &InnerFuture{resCh: resCh, errCh: errCh}
}

分片(Sharding) 将大型数据结构拆分为多个分区,以局部化读写锁的影响。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
type Shard struct {
    sync.RWMutex                            // Compose from sync.RWMutex
    m map[string]interface{}                // m contains the shard's data
}

type ShardedMap []*Shard                    // ShardedMap is a *Shards slice

func NewShardedMap(nshards int) ShardedMap {
    shards := make([]*Shard, nshards)       // Initialize a *Shards slice

    for i := 0; i < nshards; i++ {
        shard := make(map[string]interface{})
        shards[i] = &Shard{m: shard}
    }

    return shards                           // A ShardedMap IS a *Shards slice!
}

func (m ShardedMap) getShardIndex(key string) int {
    checksum := sha1.Sum([]byte(key))       // Use Sum from "crypto/sha1"
    hash := int(checksum[17])               // Pick a random byte as our hash
    index := hash % len(shards)             // Mod by len(shards) to get index
}

func (m ShardedMap) getShard(key string) *Shard {
    index := m.getShardIndex(key)
    return m[index]
}

func (m ShardedMap) Get(key string) interface{} {
    shard := m.getShard(key)
    shard.RLock()
    defer shard.RUnlock()

    return shard.m[key]
}

func (m ShardedMap) Set(key string, value interface{}) {
    shard := m.getShard(key)
    shard.Lock()
    defer shard.Unlock()

    shard.m[key] = value
}

func (m ShardedMap) Keys() []string {
    keys := make([]string, 0)               // Create an empty keys slice
    wg := sync.WaitGroup{}                  // Create a wait group and add a
    wg.Add(len(m))                          // wait value for each slice
    for _, shard := range m {               // Run a goroutine for each slice
        go func(s *Shard) {
            s.RLock()                       // Establish a read lock on s
            for key, _ := range s.m {       // Get the slice's keys
                keys = append(keys, key)
            }
            s.RUnlock()                     // Release the read lock
            wg.Done()                       // Tell the WaitGroup it's done
        }(shard)
    }
    wg.Wait()                               // Block until all reads are done
    return keys                             // Return combined keys slice
}
2020-12-26 00:00:00

Stability Patterns稳定性模式

Circuit Breaker automatically degrades service functions in response to a likely fault, preventing larger or cascading failures by eliminating recurring errors and providing reasonable error responses.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
type Circuit func(context.Context) (string, error)

// Breaker wraps a circuit with a given failure threashould.
func Breaker(circuit Circuit, failureThreshold uint64) Circuit {
    var lastStateSuccessful = true
    var consecutiveFailures uint64 = 0
    var lastAttempt time.Time = time.Now()

    return func(ctx context.Context) (string, error) {
        if consecutiveFailures >= failureThreshold {
            backoffLevel := consecutiveFailures - failureThreshold
            shouldRetryAt := lastAttempt.Add(time.Second * 2 << backoffLevel)

            if !time.Now().After(shouldRetryAt) {
                return "", errors.New("circuit open -- service unreachable")
            }
        }

        lastAttempt = time.Now()
        response, err := circuit(ctx)

        if err != nil {
            if !lastStateSuccessful {
                consecutiveFailures++
            }
            lastStateSuccessful = false
            return response, err
        }

        lastStateSuccessful = true
        consecutiveFailures = 0

        return response, nil
    }
}

Debounce limits the frequency of a function call to one among a cluster of invocations.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
type Circuit func(context.Context) (string, error)

func DebounceFirst(circuit Circuit, d time.Duration) Circuit {
    var threshold time.Time
    var cResult string
    var cError error

    return func(ctx context.Context) (string, error) {
        if threshold.Before(time.Now()) {
            cResult, cError = circuit(ctx)
        }

        threshold = time.Now().Add(d)
        return cResult, cError
    }
}
func DebounceLast(circuit Circuit, d time.Duration) Circuit {
    var threshold time.Time = time.Now()
    var ticker *time.Ticker
    var result string
    var err error

    return func(ctx context.Context) (string, error) {
        threshold = time.Now().Add(d)

        if ticker == nil {
            ticker = time.NewTicker(time.Millisecond * 100)
            tickerc := ticker.C

            go func() {
                defer ticker.Stop()

                for {
                    select {
                    case <-tickerc:
                        if threshold.Before(time.Now()) {
                            result, err = circuit(ctx)
                            ticker.Stop()
                            ticker = nil
                            break
                        }
                    case <-ctx.Done():
                        result, err = "", ctx.Err()
                        break
                    }
                }
            }()
        }

        return result, err
    }
}

Retry accounts for a possible transient fault in a distributed system by transparently retrying a failed operation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
type Effector func(context.Context) (string, error)

func Retry(effector Effector, retries int, delay time.Duration) Effector {
    return func(ctx context.Context) (string, error) {
        for r := 0; ; r++ {
            response, err := effector(ctx)
            if err == nil || r >= retries {
                return response, err
            }

            log.Printf("Attempt %d failed; retrying in %v", r + 1, delay)

            select {
            case <-time.After(delay):
            case <-ctx.Done():
                return "", ctx.Err()
            }
        }
    }
}

Throttle limits the frequency of a function call to some maximum number of invocations per unit of time.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
type Effector func(context.Context) (string, error)

func Throttle(e Effector, max uint, refill uint, d time.Duration) Effector {
    var ticker *time.Ticker = nil
    var tokens uint = max

    var lastReturnString string
    var lastReturnError error

    return func(ctx context.Context) (string, error) {
        if ctx.Err() != nil {
            return "", ctx.Err()
        }

        if ticker == nil {
            ticker = time.NewTicker(d)
            defer ticker.Stop()

            go func() {
                for {
                    select {
                    case <-ticker.C:
                        t := tokens + refill
                        if t > max {
                            t = max
                        }
                        tokens = t
                    case <-ctx.Done():
                        ticker.Stop()
                        break
                    }
                }
            }()
        }

        if tokens > 0 {
            tokens--
            lastReturnString, lastReturnError = e(ctx)
        }

        return lastReturnString, lastReturnError
    }
}

Timeout allows a process to stop waiting for an answer once it’s clear that an answer may not be coming.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
func Timeout(slowfunc func(interface{}) (interface{}, error),
    arg interface{}) func(context.Context) (interface{}, error) {
    chres := make(chan interface{})
    cherr := make(chan error)

    go func() {
        res, err := flowfunc(arg)
        chres <- res
        cherr <- err
    }()

    return func(ctx context.Context) (interface{}, error) {
        select {
        case res := <-chres:
            return res, <-cherr
        case <-ctx.Done():
            return "", ctx.Err()
        }
    }
}

断路器(Circuit Breaker) 在可能发生故障时自动降级服务功能,通过消除重复错误并提供合理的错误响应来防止更大的或级联的故障。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
type Circuit func(context.Context) (string, error)

// Breaker wraps a circuit with a given failure threashould.
func Breaker(circuit Circuit, failureThreshold uint64) Circuit {
    var lastStateSuccessful = true
    var consecutiveFailures uint64 = 0
    var lastAttempt time.Time = time.Now()

    return func(ctx context.Context) (string, error) {
        if consecutiveFailures >= failureThreshold {
            backoffLevel := consecutiveFailures - failureThreshold
            shouldRetryAt := lastAttempt.Add(time.Second * 2 << backoffLevel)

            if !time.Now().After(shouldRetryAt) {
                return "", errors.New("circuit open -- service unreachable")
            }
        }

        lastAttempt = time.Now()
        response, err := circuit(ctx)

        if err != nil {
            if !lastStateSuccessful {
                consecutiveFailures++
            }
            lastStateSuccessful = false
            return response, err
        }

        lastStateSuccessful = true
        consecutiveFailures = 0

        return response, nil
    }
}

防抖(Debounce) 将一组调用中的函数调用频率限制为仅执行一次。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
type Circuit func(context.Context) (string, error)

func DebounceFirst(circuit Circuit, d time.Duration) Circuit {
    var threshold time.Time
    var cResult string
    var cError error

    return func(ctx context.Context) (string, error) {
        if threshold.Before(time.Now()) {
            cResult, cError = circuit(ctx)
        }

        threshold = time.Now().Add(d)
        return cResult, cError
    }
}
func DebounceLast(circuit Circuit, d time.Duration) Circuit {
    var threshold time.Time = time.Now()
    var ticker *time.Ticker
    var result string
    var err error

    return func(ctx context.Context) (string, error) {
        threshold = time.Now().Add(d)

        if ticker == nil {
            ticker = time.NewTicker(time.Millisecond * 100)
            tickerc := ticker.C

            go func() {
                defer ticker.Stop()

                for {
                    select {
                    case <-tickerc:
                        if threshold.Before(time.Now()) {
                            result, err = circuit(ctx)
                            ticker.Stop()
                            ticker = nil
                            break
                        }
                    case <-ctx.Done():
                        result, err = "", ctx.Err()
                        break
                    }
                }
            }()
        }

        return result, err
    }
}

重试(Retry) 通过透明地重试失败的操作来处理分布式系统中可能出现的瞬时故障。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
type Effector func(context.Context) (string, error)

func Retry(effector Effector, retries int, delay time.Duration) Effector {
    return func(ctx context.Context) (string, error) {
        for r := 0; ; r++ {
            response, err := effector(ctx)
            if err == nil || r >= retries {
                return response, err
            }

            log.Printf("Attempt %d failed; retrying in %v", r + 1, delay)

            select {
            case <-time.After(delay):
            case <-ctx.Done():
                return "", ctx.Err()
            }
        }
    }
}

节流(Throttle) 将函数调用的频率限制在每单位时间内的最大调用次数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
type Effector func(context.Context) (string, error)

func Throttle(e Effector, max uint, refill uint, d time.Duration) Effector {
    var ticker *time.Ticker = nil
    var tokens uint = max

    var lastReturnString string
    var lastReturnError error

    return func(ctx context.Context) (string, error) {
        if ctx.Err() != nil {
            return "", ctx.Err()
        }

        if ticker == nil {
            ticker = time.NewTicker(d)
            defer ticker.Stop()

            go func() {
                for {
                    select {
                    case <-ticker.C:
                        t := tokens + refill
                        if t > max {
                            t = max
                        }
                        tokens = t
                    case <-ctx.Done():
                        ticker.Stop()
                        break
                    }
                }
            }()
        }

        if tokens > 0 {
            tokens--
            lastReturnString, lastReturnError = e(ctx)
        }

        return lastReturnString, lastReturnError
    }
}

超时(Timeout) 允许进程在明确答案可能不会到来时停止等待。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
func Timeout(slowfunc func(interface{}) (interface{}, error),
    arg interface{}) func(context.Context) (interface{}, error) {
    chres := make(chan interface{})
    cherr := make(chan error)

    go func() {
        res, err := flowfunc(arg)
        chres <- res
        cherr <- err
    }()

    return func(ctx context.Context) (interface{}, error) {
        select {
        case res := <-chres:
            return res, <-cherr
        case <-ctx.Done():
            return "", ctx.Err()
        }
    }
}
2020-12-25 00:00:00

LBRYLBRY

A decentralized video platform – could it be a competitor to YouTube?

https://odysee.com/

一个去中心化的视频平台,似乎是 YouTube 的竞争对手?

https://odysee.com/

2020-12-15 00:00:00

"Worse is Better""越差越好"

I stumbled upon an excerpt from an article called “The Rise of Worse is Better.” The author, Richard, reflects on why C and Unix succeeded. The article discusses the four major goals of software design: simplicity, correctness, consistency, and completeness. Two highly representative schools of thought have developed around these four goals: the MIT school and the New Jersey school (where Bell Labs is located). The MIT school believes that software must be absolutely correct and consistent first, then complete, and finally simple. It also “satirizes” the New Jersey school for doing the opposite – they set simplicity as the highest priority, even willing to sacrifice correctness for the sake of simplicity. In other words, software quality (popularity) does not increase with more features; from the perspective of practicality and ease of use, software with fewer features is actually more favored by users and the market.

So now you can see why some people always complain that Go can’t do this and can’t do that, is missing this and missing that. It’s because Rob Pike from Bell Labs is a through-and-through New Jersey school person. So to sum up, Go’s characteristics are:

  1. Simple
  2. Very simple
  3. Nothing but simple

There are several follow-up articles on “Worse is Better”:

  • Original: Richard P. Gabriel. The Rise of Worse is Better. 1989. https://www.dreamsongs.com/RiseOfWorseIsBetter.html
  • Follow-up 1: Nickieben Bourbaki. Worse is Better is Worse. 1991. https://dreamsongs.com/Files/worse-is-worse.pdf
  • Follow-up 2: Richard P. Gabriel. Is Worse Really Better? 1992. https://dreamsongs.com/Files/IsWorseReallyBetter.pdf
  • Follow-up 3: Richard P. Gabriel. Worse is Better. 2000. https://www.dreamsongs.com/WorseIsBetter.html
  • Follow-up 4: Richard P. Gabriel. Back to the Future: Worse (Still) is Better! Dec 04, 2000. https://www.dreamsongs.com/Files/ProWorseIsBetterPosition.pdf
  • Follow-up 5: Richard P. Gabriel. Back to the Future: Is Worse (Still) Better? Aug 2, 2002. https://www.dreamsongs.com/Files/WorseIsBetterPositionPaper.pdf

So which school do you lean towards?

偶然间读到了一篇文章的节选片段《The Rise of Worse is Better》,这篇文章的作者 Richard 围绕为什么 C 和 Unix 能够成功展开了反思。这篇文章中聊到了几个软件设计的四大目标简单、正确、一致和完整。其中围绕四个目标发展出了两大很有代表性的流派: MIT 流派和 New Jersey 流派(贝尔实验室所在地)。MIT 流派认为软件要绝对的正确和一致,然后才是完整,最后才是简单;而一并"讽刺"了 New Jersey 流派反其道而行之的做法,他们将简单的优先级设为最高,为了简单甚至能够放弃正确。换句话说,软件的质量(受欢迎的程度)并不随着功能的增加而提高,从实用性以及易用性来考虑,功能较少的软件反而更受到使用者和市场青睐。

所以你看到为什么总是有些人总是抱怨 Go 这也不行那也不行,这也没有那也没有了。因为来自贝尔实验室的 Rob Pike 就是一个彻彻底底的 New Jersey 流派中人。所以总结起来 Go 的特点就是:

  1. 简单
  2. 非常简单
  3. 除了简单就是简单

然后围绕 Worse is Better 还有好几篇后续文章:

  • 原始文章: Richard P. Gabriel. The Rise of Worse is Better. 1989. https://www.dreamsongs.com/RiseOfWorseIsBetter.html
  • 后续 1: Nickieben Bourbaki. Worse is Better is Worse. 1991. https://dreamsongs.com/Files/worse-is-worse.pdf
  • 后续 2: Richard P. Gabriel. Is Worse Really Better? 1992. https://dreamsongs.com/Files/IsWorseReallyBetter.pdf
  • 后续 3: Richard P. Gabriel. Worse is Better. 2000. https://www.dreamsongs.com/WorseIsBetter.html
  • 后续 4: Richard P. Gabriel. Back to the Future: Worse (Still) is Better! Dec 04, 2000. https://www.dreamsongs.com/Files/ProWorseIsBetterPosition.pdf
  • 后续 5: Richard P. Gabriel. Back to the Future: Is Worse (Still) Better? Aug 2, 2002. https://www.dreamsongs.com/Files/WorseIsBetterPositionPaper.pdf

所以你更倾向于哪个学派?

2020-12-13 00:00:00

Proebsting's LawProebsting 定律

Today I read an extra paper. Although it’s not directly related to Go, I think it offers some insightful perspective on the current state of the Go language, so I’d like to share it. The paper is called “On Proebsting’s Law.”

We all know Moore’s Law says the number of transistors on integrated circuits doubles every 18 months, but this paper studies and validates the so-called Proebsting’s Law: the performance improvement brought by compiler optimization techniques doubles every 18 years. Proebsting’s Law was proposed in 1998, and its author Todd Proebsting was probably half-joking, because he suggested that the compiler and programming language research community should reduce their focus on performance optimization and instead pay more attention to improving programmer productivity.

Now, looking back at this suggestion with hindsight, we can see it’s not without merit: although Go’s compiler has gone through several major optimization versions, the techniques it uses aren’t particularly fancy – rather, they are quite traditional and conventional optimization techniques. However, this hasn’t hindered Go’s success, because what it tries to address is exactly programmer productivity:

  1. By avoiding circular dependencies, it greatly reduces the time programmers spend waiting for compilation
  2. Its very concise language design and feature set greatly reduces the time programmers spend thinking about how to use the language
  3. Forward compatibility guarantees almost entirely eliminate the migration and maintenance time caused by version upgrades
  • Paper: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.434&rep=rep1&type=pdf
  • Proebsting’s Law: http://proebsting.cs.arizona.edu/law.html

今天额外读了一篇论文,虽然跟 Go 没有直接关系,但我觉得对理解目前 Go 语言的现状是有一定启发意义的,所以来分享一下。这篇论文叫做 “On Proebsting’s Law”。

我们都知道 Moore 定律说集成电路上晶体管数量每 18 个月番一番,但这篇论文则研究并验证了所谓的Proebsting 定律: 编译器优化技术带来的性能提升每 18 年番一番。Proebsting 定律是在 1998 年提出的,当时的提出者 Todd Proebsting 可能只是在开玩笑,因为他建议编译器和编程语言研究界应该减少对性能优化的关注,而应该更多的关注程序员工作效率的提升。

现在我们来事后诸葛亮评价这一建议就能发现其实这并不是无道理的: Go 语言的编译器虽然经历过几大版本的优化,但其使用的技术并不够 fancy,相反而是很传统且中规中矩的优化技术。然而这并不影响 Go 语言的成功,因为它尝试解决的正是程序员的工作效率:

  1. 通过避免循环以来而极大的减少了程序员等待编译的时间
  2. 非常简洁的语言设计与特性极大的减少了程序员思考如何使用语言的时间
  3. 向前的兼容性保障几乎彻底消除了因为版本升级给程序员带来的迁移和维护时间
  • 论文地址/Paper: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.29.434&rep=rep1&type=pdf
  • Proebsting’s Law: http://proebsting.cs.arizona.edu/law.html
2020-12-12 00:00:00

Telegram BotTelegram 机器人

Because the COVID situation in Europe is still terrible, even shopping at an Apple Store requires an appointment in advance. Since I urgently needed to visit an Apple Store recently but couldn’t find any available appointment slots, I quickly hacked together a tool to check availability and send a reminder message via Telegram when an appointment becomes available. Tool link: https://changkun.de/s/apreserve

Interacting with Telegram using Go is straightforward:

  1. Create a bot from BotFather
  2. Obtain the bot’s token and the chat ID for your conversation with it
  3. Then you can handle messages
  • BotFather: https://t.me/botfather
  • Tg bot API Go bindings: https://github.com/go-telegram-bot-api/telegram-bot-api
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
package main

import (
	tg "github.com/go-telegram-bot-api/telegram-bot-api"
)

func main() {
	token := …
	chatid := …
	bot, err := tg.NewBotAPI(token)
	if err != nil { … }
	bot.Send(tg.NewMessage(chatid, "text"))
}

因为欧洲疫情依然很糟糕,所以现在甚至于想去苹果店购物都要提前预约。因为最近急需要去苹果店一次,又苦于刷不到可用的预约位置,刚刚顺手就糊一个工具来检查,当预约可用时给telegram发送一条提醒消息。工具地址: https://changkun.de/s/apreserve

用 Go 和 telegram 进行交互没有任何难度:

  1. 从 botfather 创建一个 bot
  2. 获得这个 bot 的 token 以及跟它对话的 chatid
  3. 于是可以处理消息了
  • BotFather: https://t.me/botfather
  • Tg bot API Go bindings: https://github.com/go-telegram-bot-api/telegram-bot-api
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
package main

import (
	tg "github.com/go-telegram-bot-api/telegram-bot-api"
)

func main() {
	token := …
	chatid := …
	bot, err := tg.NewBotAPI(token)
	if err != nil { … }
	bot.Send(tg.NewMessage(chatid, "text"))
}
2020-12-10 00:00:00

Apple SiliconApple Silicon

How is Go’s compilation performance on darwin/arm64? I did a rough and non-rigorous comparison of Go compilation performance between an Intel Mac and an M1 Mac. This compilation report was generated with the following commands:

$ go build -gcflags='-bench=bench.out' -a $ cat bench.out

where -a disables the compilation cache.

MacBook Air (M1, 2020), Apple M1, 16 GB:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
commit: devel +7716a2fbb7 Sun Nov 22 11:44:49 2020 -0500
goos: darwin
goarch: arm64
BenchmarkCompile:main:fe:init              1     305167 ns/op     17.86 %
BenchmarkCompile:main:fe:loadsys           1     164916 ns/op      9.65 %
BenchmarkCompile:main:fe:parse             1     199209 ns/op     11.66 %    23 lines    115457 lines/s
BenchmarkCompile:main:fe:typecheck:top1    1       7625 ns/op      0.45 %
BenchmarkCompile:main:fe:typecheck:top2    1       2375 ns/op      0.14 %
BenchmarkCompile:main:fe:typecheck:func    1      34000 ns/op      1.99 %     1 funcs     29412 funcs/s
BenchmarkCompile:main:fe:capturevars       1        250 ns/op      0.01 %
BenchmarkCompile:main:fe:inlining          1       9500 ns/op      0.56 %
BenchmarkCompile:main:fe:escapes           1       5834 ns/op      0.34 %
BenchmarkCompile:main:fe:xclosures         1      49583 ns/op      2.90 %
BenchmarkCompile:main:fe:subtotal          1     778459 ns/op     45.56 %
BenchmarkCompile:main:be:compilefuncs      1     279125 ns/op     16.34 %     1 funcs      3583 funcs/s
BenchmarkCompile:main:be:externaldcls      1        500 ns/op      0.03 %
BenchmarkCompile:main:be:dumpobj           1     639667 ns/op     37.44 %
BenchmarkCompile:main:be:subtotal          1     919292 ns/op     53.81 %
BenchmarkCompile:main:unaccounted          1      10791 ns/op      0.63 %
BenchmarkCompile:main:total                1    1708542 ns/op    100.00 %

Mac mini (2018), 3 GHz 6-Core Intel Core i5, 8 GB 2667 MHz DDR4:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
commit: go1.15.6
goos: darwin
goarch: amd64
BenchmarkCompile:main:fe:init              1     333752 ns/op     15.31 %
BenchmarkCompile:main:fe:loadsys           1     246343 ns/op     11.30 %
BenchmarkCompile:main:fe:parse             1     372343 ns/op     17.08 %    23 lines    61771 lines/s
BenchmarkCompile:main:fe:typecheck:top1    1      19620 ns/op      0.90 %
BenchmarkCompile:main:fe:typecheck:top2    1       7347 ns/op      0.34 %
BenchmarkCompile:main:fe:typecheck:func    1      23073 ns/op      1.06 %     1 funcs    43341 funcs/s
BenchmarkCompile:main:fe:capturevars       1        238 ns/op      0.01 %
BenchmarkCompile:main:fe:inlining          1      13277 ns/op      0.61 %
BenchmarkCompile:main:fe:escapes           1      19283 ns/op      0.88 %
BenchmarkCompile:main:fe:xclosures         1     102213 ns/op      4.69 %
BenchmarkCompile:main:fe:subtotal          1    1137489 ns/op     52.19 %
BenchmarkCompile:main:be:compilefuncs      1     598194 ns/op     27.45 %     1 funcs     1672 funcs/s
BenchmarkCompile:main:be:externaldcls      1        766 ns/op      0.04 %
BenchmarkCompile:main:be:dumpobj           1     415450 ns/op     19.06 %
BenchmarkCompile:main:be:subtotal          1    1014410 ns/op     46.54 %
BenchmarkCompile:main:unaccounted          1      27696 ns/op      1.27 %
BenchmarkCompile:main:total                1    2179595 ns/op    100.00

Go在darwin/arm64上的编译性能怎么样?我很不严谨的粗略比较了Intel Mac 和 M1 Mac 的 Go 编译性能。这个编译报告由如下指令生成:

$ go build -gcflags='-bench=bench.out' -a $ cat bench.out

其中-a用于禁用编译缓存。

MacBook Air (M1, 2020), Apple M1, 16 GB:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
commit: devel +7716a2fbb7 Sun Nov 22 11:44:49 2020 -0500
goos: darwin
goarch: arm64
BenchmarkCompile:main:fe:init              1     305167 ns/op     17.86 %
BenchmarkCompile:main:fe:loadsys           1     164916 ns/op      9.65 %
BenchmarkCompile:main:fe:parse             1     199209 ns/op     11.66 %    23 lines    115457 lines/s
BenchmarkCompile:main:fe:typecheck:top1    1       7625 ns/op      0.45 %
BenchmarkCompile:main:fe:typecheck:top2    1       2375 ns/op      0.14 %
BenchmarkCompile:main:fe:typecheck:func    1      34000 ns/op      1.99 %     1 funcs     29412 funcs/s
BenchmarkCompile:main:fe:capturevars       1        250 ns/op      0.01 %
BenchmarkCompile:main:fe:inlining          1       9500 ns/op      0.56 %
BenchmarkCompile:main:fe:escapes           1       5834 ns/op      0.34 %
BenchmarkCompile:main:fe:xclosures         1      49583 ns/op      2.90 %
BenchmarkCompile:main:fe:subtotal          1     778459 ns/op     45.56 %
BenchmarkCompile:main:be:compilefuncs      1     279125 ns/op     16.34 %     1 funcs      3583 funcs/s
BenchmarkCompile:main:be:externaldcls      1        500 ns/op      0.03 %
BenchmarkCompile:main:be:dumpobj           1     639667 ns/op     37.44 %
BenchmarkCompile:main:be:subtotal          1     919292 ns/op     53.81 %
BenchmarkCompile:main:unaccounted          1      10791 ns/op      0.63 %
BenchmarkCompile:main:total                1    1708542 ns/op    100.00 %

Mac mini (2018), 3 GHz 6-Core Intel Core i5, 8 GB 2667 MHz DDR4:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
commit: go1.15.6
goos: darwin
goarch: amd64
BenchmarkCompile:main:fe:init              1     333752 ns/op     15.31 %
BenchmarkCompile:main:fe:loadsys           1     246343 ns/op     11.30 %
BenchmarkCompile:main:fe:parse             1     372343 ns/op     17.08 %    23 lines    61771 lines/s
BenchmarkCompile:main:fe:typecheck:top1    1      19620 ns/op      0.90 %
BenchmarkCompile:main:fe:typecheck:top2    1       7347 ns/op      0.34 %
BenchmarkCompile:main:fe:typecheck:func    1      23073 ns/op      1.06 %     1 funcs    43341 funcs/s
BenchmarkCompile:main:fe:capturevars       1        238 ns/op      0.01 %
BenchmarkCompile:main:fe:inlining          1      13277 ns/op      0.61 %
BenchmarkCompile:main:fe:escapes           1      19283 ns/op      0.88 %
BenchmarkCompile:main:fe:xclosures         1     102213 ns/op      4.69 %
BenchmarkCompile:main:fe:subtotal          1    1137489 ns/op     52.19 %
BenchmarkCompile:main:be:compilefuncs      1     598194 ns/op     27.45 %     1 funcs     1672 funcs/s
BenchmarkCompile:main:be:externaldcls      1        766 ns/op      0.04 %
BenchmarkCompile:main:be:dumpobj           1     415450 ns/op     19.06 %
BenchmarkCompile:main:be:subtotal          1    1014410 ns/op     46.54 %
BenchmarkCompile:main:unaccounted          1      27696 ns/op      1.27 %
BenchmarkCompile:main:total                1    2179595 ns/op    100.00
1 2 3 4 5
New Idea新想法
© 2008 - 2026 Changkun Ou. All rights reserved.保留所有权利。 | PV/UV: /
0%