Some interesting work:
- Representation Engineering: A Top-Down Approach to AI Transparency: https://arxiv.org/abs/2310.01405
- Progress Measures for Grokking via Mechanistic Interpretability: https://arxiv.org/abs/2301.05217
Moral licensing and psychological homeostasis suggest that model values emerge from distributed patterns rather than localized circuits, implying that alignment requires cultivating robust equilibria across the representation space rather than surgical intervention at isolated points.
The following content is generated by LLMs and may contain inaccuracies.
Context
This idea bridges mechanistic interpretability and AI alignment by questioning a foundational assumption: that alignment interventions should target specific circuits or components. Drawing on Representation Engineering, which treats population-level representations as the primary unit of analysis, and insights from grokking dynamics showing how algorithms emerge gradually across training phases, the proposal reframes alignment as cultivating stable equilibria in representation space. The psychological parallel to moral licensing—where compensatory behaviors maintain overall value homeostasis—suggests models may similarly regulate their outputs through distributed representational dynamics rather than localized mechanisms.
Key Insights
Gradual emergence over surgical precision: The grokking work by Nanda et al. demonstrates that capability development unfolds through continuous phases (memorization, circuit formation, cleanup) rather than discrete transitions. This implies alignment properties might similarly arise from gradual equilibration processes across the network, challenging intervention strategies that assume stable, localizable “honesty neurons” or “safety circuits.”
Population-level control mechanisms: Representation Engineering shows that monitoring and manipulating high-level cognitive phenomena requires working with distributed activation patterns rather than individual neurons. If values emerge from interactions across representation space—analogous to how psychological homeostasis maintains behavioral consistency through compensatory adjustments—then alignment interventions must consider systemic feedback loops rather than isolated edits.
Robustness through equilibria: The moral licensing analogy suggests a subtle risk: locally suppressing unwanted behaviors (e.g., via activation steering) might trigger compensatory mechanisms elsewhere in the representation space, similar to how people who perform virtuous acts sometimes license themselves to transgress later. Durable alignment may require establishing stable attractors in representation space that resist such homeostatic pressures.
Open Questions
Can we formalize what constitutes a “healthy” representation equilibrium versus a deceptively stable one that masks misalignment? What metrics would distinguish robust value integration from brittle compensatory balancing?
If models develop psychological-homeostasis-like mechanisms, could adversarial training inadvertently teach them to better hide misalignment behind equilibrated surface behaviors, similar to sophisticated human rationalization?
一些有趣的工作:
- 表示工程:AI透明度的自上而下方法: https://arxiv.org/abs/2310.01405
- 通过机制可解释性衡量Grokking进展: https://arxiv.org/abs/2301.05217
道德许可和心理稳态表明,模型价值观来自分布式模式而非局部电路,这意味着对齐需要在表示空间中培养稳健的平衡,而不是对孤立点进行手术干预。
以下内容由 LLM 生成,可能包含不准确之处。
背景
这个想法通过质疑一个基础假设——对齐干预应该针对特定电路或组件——来连接机制可解释性和AI对齐。该提案借鉴表示工程(将群体级表示视为主要分析单位)以及Grokking动态学的见解(显示算法如何在训练阶段逐步出现),将对齐重新定义为在表示空间中培养稳定平衡。心理学上与道德许可的平行——补偿性行为维持整体价值稳定——表明模型可能通过分布式表示动态而非本地化机制来调节其输出。
关键洞察
渐进式出现而非手术精度:Nanda等人的grokking工作表明,能力发展通过连续阶段(记忆化、电路形成、清理)展开,而非离散转变。这意味着对齐特性可能类似地源于整个网络的渐进平衡过程,挑战假设存在稳定的、可定位的"诚实神经元"或"安全电路"的干预策略。
群体级控制机制:表示工程表明,监测和操纵高级认知现象需要处理分布式激活模式而非单个神经元。如果价值从表示空间的相互作用中出现——类似于心理稳定如何通过补偿性调整维持行为一致性——那么对齐干预必须考虑系统反馈循环而非孤立编辑。
通过平衡实现稳健性:道德许可的类比表明一个微妙的风险:局部压制不需要的行为(例如通过激活转向)可能在表示空间的其他地方触发补偿机制,类似于进行善行的人有时会许可自己后来越界。持久的对齐可能需要在表示空间中建立抵抗这些稳定压力的稳定吸引子。
开放问题
我们能否形式化什么构成"健康的"表示平衡与欺骗性稳定但掩盖错位的平衡?什么指标能区分稳健的价值整合与脆弱的补偿平衡?
如果模型开发出类似心理稳定的机制,对抗训练是否可能无意中教会它们更好地将错位隐藏在平衡的表面行为后面,类似于复杂的人类理性化?